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Abstract

In this thesis we will describe theoretical foundations of Quantum Finite Automata, which emerged as

the quantum counterpart of DFA. A focus will be given to automata allowed to scan the tape only

in one direction (briefly called, one way). We will first start from an introduction on Linear Algebra

and measurement theory, that we will use to define the first two models of Quantum Finite Automata:

Measure Once and Measure Many.

Using these preliminary notions we will be able to study the expressive power of such classes of

automata. In particular we will focus on different acceptance conditions that have been used throughout

the years. After characterizing the expressive power we will be able to introduce some necessary and

sufficient conditions for languages of the classic Chomsky Hierarchy to be accepted by a QFA. To

conclude this discussion, we will move outside the class of one way automata considering 1.5 and 2 way

automata. Using these last formalisms we will be able to introduce a complete hierarchy of expressive

power of QFAs.

To conclude this thesis, as an original contribution to the state of the art, we will introduce a brand

new family of automata inspired by the Heisenberg picture of Quantum Mechanics. We will study

this formalism providing three different acceptance conditions. For each one of them we will try to

characterize the expressive power it yields to. With the first acceptance condition we were able to prove

that this new formalism is more powerful than Measure Once QFA. With the other two conditions we

are able to show that at least they are as powerful as Measure Once QFA. While the other direction

remains an open question.
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1
Introduction

The first idea of Quantum Computer is usually related to Richard Feynman. When Quantum Mechanics

was at its spike, because of its probabilistic nature, it was clear that classic computers wouldn’t have

been able to simulate Quantum Systems. In that environment Richard Feynman proposed to exploit

Quantum Mechanics properties in order to create a faster model of computation: the quantum computer.

From that very moment, a race to Quantum Computer started. The hard truth researchers faced in a

really short amount of time was that QM is really counterintuitive, and they found themselves struggling

with the creation of both a Quantum Hardware and Software. One of the first scientists that started

working on the theoretical foundations of Quantum Computing was David Deutsch in [6]. He described

the Church-Turing principle for Quantum Computing and introduced the idea of a quantum universal

computer based on Quantum Turing machines. Deutsch idea was to replicate the steps made when

classic theory of computation was developed, hoping to get to the same results. After that paper was

published, a lot of other accomplishments were made such as the introduction of computational models

like Quantum Finite Automata and Quantum Gates. Moreover, it has been proved that Quantum

algorithms can obtain an exponential speed-up with respect to their classic counterpart. The most

famous algorithms are Shor and Grover. The former can factorize numbers in a polynomial (quantum)

number of steps. The latter is used to search an element in a database, with no preconditions on the

input, with a running time of
√
N where N is the size of the input as number of elements.

When talking about algorithms for Quantum Computers we explicitly refer to quantum running

time. As for the Classic version of Turing Machine, also for the Quantum one a notion of running time

and computational Complexity have been introduced. The most important class is BQP which consists

of those problems that can be solved with bounded probability of error using a polynomial size quantum

circuit. It’s the quantum analog of BPP. The current known chain of inclusions is the following:

P ⊆ BPP ⊆ BQP ⊆ PSPACE

Of course, when talking about computational complexity one of the main concerns is the question ‘is P

equals to NP?’; actually, a similar question can be asked also for BQP: which is the relation between

BQP and NP? Being able to answer such a question could help us understand the true relation between

P and NP. Studying this kind of problems clearly requires going deep in the theoretical foundations of

computation, just like it has been done for classic computers. Thus, it is mandatory to study lower-level



4 Chapter 1 — Introduction

formalisms, like Quantum Automata. Quantum Finite Automata are the Quantum Counterpart of the

classic Deterministic Automata. Quantum Automata were first introduced by Kondacs and Watrous in

[7]. A lot of other papers came out after that first one, and they followed two main approaches. The

first approach tries to characterize the expressive power of Quantum Finite state Automata as they

were introduced by Kondacs and Watrous. The two models used in this case are known as ‘Measure

Once QFA’ and ‘Measure Many QFA’. In the first one only one measurement is made at the end of the

computation, while in the second one a measurement is made after each step. The characterization of

languages accepted by MO-QFA and MM-QFA was done in [5] and [1]. From these papers, the most

counterintuitive result we got is that both MO-QFA and MM-QFA accept a subset of regular languages.

The second approach tries to introduce new models of Quantum Finite Automata. Unfortunately, none

of these new models can overcome the regular language limitation. The only way to do so is to allow the

automata a more ‘Turing machine’-like behavior (i.e.: 2-Way QFA which are allowed to scan the tape

in two directions). In this thesis we will then give an overview about the state of the art for Quantum

Finite Automata and we will also present some original contribution with a new model of QFA.

Notice that from Chapter 4 to Chapter 9 we are going to introduce a serie of QFA models that are all

based on the Shrödinger picture of Quantum Mechanics. While the brand new model we will introduce

in Chapter 10 is based upon Heisenberg Picture. In Shrödinger Picture a quantum system is described

by an initial state and a set of unitary matrices that are used to make the system evolve. The time

dependent component in this picture is the state: in fact, the state at time t > 0 is different from the

state at time 0. In this case the unitary matrices remain unchanged. On the other hand, Quantum

Mechanics can also be described using the so called Heisenberg Picture. As in Shrödinger’s we start

from a state and a set of unitaries but in this case the time dependecy is moved from the state to the uni-

taries. Thus, the state remains fixed to its initial (i.e. time 0) value while the unitaries change through

time. Physically speaking the equivalence between Shrödinger and Heisenberg picture has already been

proved (in fact Copenhagen interpretation of QM usually refers to the Shrödinger picture). In a more

Computer Science oriented approach, anyone has ever tried to exploit the features of Heisenberg picture

while designing QFA models. This is what we aimed to do introducing QHFA.

Giving now an rapid overview on what we are going to discuss in this thesis,

We start from Chapter 2 in which we will introduce and describe a series of mathematical tools. We

will need them throughout the whole thesis to formalize the description of the topics.

In Chapter 3 we will then move to an higher abstraction level. We will give a shallow introduction to

Quantum Mechanics in a physical way. Then we will move to the description of Quantum Computing

in its most basic components. In the final part we will also give a proof of the differences between

probabilistic and quantum computing using the Quantum Interference effect.

In Chapter 4 we will finally introduce two different version of Quantun Automata. It will then lead us

to the definition of Measure Once and Measure Many QFA. Historically speaking, the two models were

derived indipendently but roughly at the same time.

In Chapter 5 we will introduce some notions of acceptance for Quantum Automata. Moreover, we will

state and prove some theorems useful to create a link between diffent acceptance conditions.

In Chapter 6 we will finally move into the description of the expressive power of Quantum Finite

Automata. We will do it for both Measure Once and Measure Many QFA.
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In Chapter 7 we will introduce the 1-Way General QFA. This formalism was introduced with the goal

of overcoming the expressive power of Measure Many and Measure Once QFA.

In Chapter 8 we will the introduce other two formalisms for QFA. The reason for this chapter is to

show to the reader in which way the researchers tried to overcome the limitation introduced by MO and

MM QFA.

In Chapter 9 we will move in the description of QFA that are allowed to move also right or even stay

put in the input tape. After this descriptuion we will be able to introduce a complete expressiveness

hierarchy for QFAs.

We will then use Chapter 10 to introduce and describe the original contribution of this thesis about

QFA. In particular, a brand new model of Quantum Finite Automata will be introduced. The main idea

it exploits is the Heisenberg Picture of Quantum Mechanics. For this new model we will prove some

basic results and we will of course give some unanswered questions that may be answered in the future.





2
Prerequisites

In this section we will introduce some Prerequisites. They will be necessary to understand all the

operations we will use during the description of the various formalisms. We will start by giving some

basic definitions about the mathematics we are going to need throughout the whole thesis. Then we

will introduce the main lemmas about Quantum Mechanics. In the end we will switch to some more

advanced mathematical topics like quantum measurament.

2.1 Complex Numbers

A complex number is any number of the form:

a+ ib (2.1)

Where a, b ∈ R are known as the Real part and the Imaginary part respectively. i is the imaginary unit

such that i2 = −1. The set of all complex numbers is called C.

Given a complex number w = a+ ib we define the norm of w as:

|w| =
√︁
a2 + b2

while the complex conjugate of w is:

w∗ = a− ib

A generic complex number z = a + ib can also be described using polar coordinates. If in fact we

see z as a vector on a complex plane, then the length of the vector is its own norm (r = |z|) and it

forms with the real axis an angle ϕ. Using classic trigonometric rules, we can see that a = r cosϕ while

b = r sinϕ, thus z = r cosϕ+ ir sinϕ. Rewriting the terms and using Euler formula eiθ = cos θ+ i sin θ,

z can be written as:

z = reiϕ (2.2)
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2.2 Hilbert space

Definition 2.2.1 (Hilbert Space). Let V denote a Vector Space over C. V is called Inner Product space

if it has an Inner product defined on it. Namely, an inner product is a function (·, ·) : V × V → C that

satisfies the following:

• (αx+ βy, z) = α(x, z) + β(y, z) ∀x, y, z ∈ V, α, β ∈ C

• (x, x) ≥ 0 ∀x ∈ V \ {0} Moreover, it’s true that: (x, x) = 0↔ x = 0

• (x, y) = (y, x)∗ ∀x, y ∈ V

An Hilbert Space is an Inner Product space that is complete under the norm induced by ∥ · ∥. With

complete under the norm we mean that all the Cauchy sequences of vectors in V focus to a limit in V

: this proprerty is meaningfull with infinite-dimension spaces, because with finite-dimension spaces it is

always true. In quantum computing, all the vector spaces have a finite number of dimensions: so, for

our purposes, the term Hilbert Space is equal to Inner product Space.

2.3 The C2 space

The space in which the computational basis is described is C2. The generic element v ∈ C2 has the

form:

v =

(︄
α

β

)︄
with α, β ∈ C.
Given a vector v ∈ C2 as just defined we will refer to its norm has:

∥v∥ =
√︁
|a|2 + |b|2

and to its complex conjugate with the row-vector:

v† = (α∗, β∗)

Definition 2.3.1. A vector v ∈ C2 is said to be a unit vector if ∥v∥ = 1. If this condition holds, then

is also true that v is normalized.

If a vector v is non-normalized then the operation of dividing it by its norm is called normalization,

namely

v = v
∥v∥

Given two vectors v =

(︄
αv,

βv

)︄
, w =

(︄
αw,

βw

)︄
∈ C2 we define their inner product as:

(v, w) = v†w = (α∗
v, β

∗
v)

(︄
αw

βw

)︄
= α∗

vαw + β∗vβw (2.3)

The space C2 together with the inner product as defined above is an Hilbert Space.
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2.3.1 Dirac Notation

To describe a generic element inside Cn (notice that all the definitions we gave for C2 are easily gener-

alized for a generic n ≥ 3) we will use the dirac notation:

• The general column vector v ∈ Cn is written as |v⟩ (known as ket)

• Given v ∈ Cn then v† is written as ⟨v| (known as bra)

• The inner product as defined in (2.3) between two vectors v, w ∈ Cn is written as ⟨v |w⟩ (bra-ket
notation)

• If U is a linear operator on Cn then to apply U to a generic vector v ∈ Cn we write U |v⟩

• If U is a linear operator on Cn and |ψ⟩ , |φ⟩ ∈ Cn then with ⟨φ|U |ψ⟩ is the inner product between
|φ⟩ and U |ψ⟩

Using this notation we can now introduce the orhtogonality definition.

Definition 2.3.2. |ψ⟩ , |φ⟩ are ortoghonal if their inner product is 0.

Moreover, the norm of a vector |ψ⟩ can be rewritten as:

∥ |ψ⟩ ∥ =
√︁
⟨ψ|ψ⟩

We can also define that a set {|1⟩ , |2⟩ , · · · |n⟩} of n vectors is said to be orthonormal if each vector

is a unit vector vector and distinct vectors in the set are orthogonal that is

⟨i|j⟩ =

⎧⎨⎩0 if i ̸= j

1 if i = j

2.4 Complex matrices

We refer to a complex matrix as a generic element of the vector space Cn×n (with n > 1). Given

A ∈ Cn×n we will use A† to refer to its Conjugate transpose: A† is obtained from A taking the transpose

of A and then changing every complex element with its own complex conjugate.

Definition 2.4.1. A complex matrix A ∈ Cn×n is said to be an Hermitian matrix(or self-adjoint) if

it’s equal to its own conjugate transpose; namely, A = A†

Notice that, on an Hermitian complex matrix the elements on the diagonal must be real (the only

way for a complex number to be equals to its own complex conjugate is to have a 0 imaginary part).

Definition 2.4.2. An Hermitian Matrix A ∈ Cn×n is positive semi-definite if it’s true that:

x∗Ax ≥ 0 ∀x ∈ Cn

Definition 2.4.3. A complex matrix A ∈ Cn×n is said to be unitary if A† is also equal to the inverse

of A. Namely,

AA† = A†A = I
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Definition 2.4.4. Suppose W is a k-dimensional vector subspace

of a d-dimensional space V . Then we can construct an orthonormal basis |1⟩ , |2⟩ , . . . |d⟩ for V such that

|1⟩ , |2⟩ , . . . |k⟩ is an orthonormal basis for W . By definition, the operator P defined as:

P =
∑︂
k

|i⟩ ⟨i|

is the projector onto the subspace W .

From the definition we gave above, it can be shown that P is Hermitian and moreover it holds that

P is idempotent, namely P 2 = P

2.5 Projective measurement

To extract some information from a quantum state |ψ⟩ a measurement has to be performed: the operation

we will use for this kind of operation is the projective measurament. We will consider here only projective

measurements that are defined by a set of so called projective matrices {Pm} where the index m is the

potential outcome we could get from the measurament. Not all set of matrices are allowed as projective

measurament, but {Pm} has to respect the constraint that:

PiPj =

⎧⎨⎩Pi i = j

0 i ̸= j

and moreover it must hold that:
n∑︂

i=1

Pi = I

where I stands for the identity matrix.

When a state |ψ⟩ is measured using a projective measurement {Pm} then the probability of getting

m as an outcome is described by the equation:

p(m) = ⟨ψ|Pm |ψ⟩ = ∥Pm |ψ⟩ ∥2

and the state then consequentially collapses into a new state |ψ′⟩:

⃓⃓
ψ′⟩︁ = Pm |ψ⟩√︁

p(m)

Usually a projective measurement {Pm} is described using an observable M , an Hermitian matrix that

has a decomposition:

M =
∑︂
m

mPm

where m are different eigenvalues and Pm is the projector onto the eigenspace of M with eigenvalue m.
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2.6 Recall of classic automata

Definition 2.6.1 (Reversible Finite Automata). A 1-Way reversible automata (RFA) is a DFA M =

(Q,Σ, δ, q0, F ) in which, for every pair (q, a) ∈ Q×Σ there is at most one q′ ∈ Q such that σ(q′, a) = q

(or, if there exists q1, q2 different states such that δ(q1, a) = δ(q2, a) = q, then it’s true that
⋃︁

a∈Σ δ(q, a) =

{q}. This state is also called a spin state cause once the automata reaches it, it never leaves it).

Definition 2.6.2 (Probabilistic Reversible Finite Automata). A PRFA is a probabilistic finite automata

such that for any q1 and any α ∈ A there is at most one q2 such that the probability of passing from q2

to q1 after reading α is non zero.

We can then link che class of language accepted by RFAs with the one accepted by PRFAs using

the following theorem:

Theorem 1. If a language L is accepted by a RFA M then there exists a PRFA M ′ which accepts L

Proof. The proof is trivial because M ′ is exactly M where all the edges have probability 1.





3
Quantum Computing

3.1 Quantum Mechanics

Quantum Mechanics (QM for short) is the field of physics that studies the behaviour of sub-atomic

particles. It is, togheter with General Relativity, the main block of modern physics. The father of QM

is Max Planck that in the 1900 firstly theorized the idea of quanta: the smallest ’packet’ a light radation

can be splitted in. This theory was then formalized by Einstein in the 1905: from that point on, QM

was officially born. The main contributors to the developement of the theory are physicists like Erwin

Schrödinger, Werner Karl Heisenberg, Niels Bohr and so on. The first counter-intuitive phenomena on

which the QM (the subatomic realm where the quantum mechanics rules act) relies on is the wave-

particle duality : this principle states that photons or other subatomic particle does not behave only

as particles but also as waves; the experiment that helped proving this statement is also known as the

double slit experiment where a photon showed property that were clearly associated to waves (when

particle-like behaviours were expected).

How to describe the result of this experiment? The most common interpretation (it’s neither the

only one nor the best one, just the most widely used) for QM is known as Copenhagen interpretation

and it describes the subatomic realm using just a few definitions:

• A wave function which is commonly named Ψ represents the entire state of the system (so there

are no hidden variables that we are, for an human error, not taking into account). It encapsulates

everything that can be known about that system before an observation; the evolution during time

of this wave function is actually deterministic, and it’s described using the Schrödinger equation

(if we suppose to take as basic ’picture’ for quantum mechanics the Schrödinger one).

• The properties of the system follow a principle of incompatibility, defined through the Heisenberg

uncertarnty principle; it states for example, that more precisely we measure the position of a

particle, less precisely we can measure its momentum (the pairs of properties that are constrainted

under the uncertanty principle are known as Complementary)

• When the system is measured, the wave function of the system is said to collapse, or irreversibly

reduce to an eigenstate of the observable that is seen.
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• Even if the system is described using a wave function and the uncertanty principle does not

allow us to measure all the properties with the same precision, it is widely accepted that after

a measurement is made the result is totally a ’classic’ result (for the position we will have some

coordinates, for the speed a value that has correct measurement unit and so on).

• The description given by the wave function is probabilistic, and so, nature is probabilistic (from

here the famous quote from Einstein God does not play dice). The probability of an event (using

the description given by a wave function) is the square of the absolute value of the amplitude of

its wave function.

• The wave function expresses and prove the wave–particle duality.

• When quantum numbers are large, they refer to properties which closely match those of the

classical description.

The first and the third point in this list are the most useful ones when understanding quantum

computing; using a mathematical description, the first point can be described as:

Definition 3.1.1. Associated to any isolated physical system is a complex vector space with an inner

product, namely an Hilbert Space, known as the state space of the system. The current state of the

system is completely described by its state vector which is a unit vector in its state space.

Moreover, the evolution of a closed system is described using an unitary transformation. That is,

the state |φ⟩ of a system at time t1 is related to the state |φ′⟩ at time t2 by an unitary operator U that

only depends on t1, t2 namely: ⃓⃓
φ′⟩︁ = U(t1, t2) |φ⟩

Obviously, during our disssertation we will not use any description related to the well accepted

notion of time: we can, anyway, describe the process of reading two consecutive chars in a string as

two consecutive processes happening in two consecutive moments in time. Therefore, we can create a

biijection between a generic string σ = σ1σ2 . . . σn (namely, the input of our Finite automata) and the

consecutive moments in time t1, t2, . . . tn where ti, ti+1 are consecutive moments in time ∀i = 1, 2 . . . n−1
and at the moment ti only the char σi is eventually provided as input to the Quantum Finite Automata.

In this way the equation we introduced above to describe the evolution in time of a state vector can be

described using the notion of read character, where during the computation for an n-length string σ,

given two moments in time ti, tj with i ∈ {1, 2, . . . n − 1} and j ∈ {i + 1, i + 2, . . . n} we can state the

system evolves according to the rule:

⃓⃓
φ′⟩︁ = U(ti, tj) |φ⟩ = U(σi, σi+1 . . . σj) |φ⟩

Relating U to σ and not anymore to the notion of time.

The other concept that is useful in either Quantum Mechanics and Quantum Computing is the

measurement.

Definition 3.1.2. Quantum measurements are described by a collection {Mm} of measurement opera-

tors. These are operators acting on the state space of the system being measured. The index m refers
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to the measurement outcomes that may occur in the experiment. If the state of the quantum system is

|ψ⟩ immediately before the measurement then the probability that result m occurs is given by:

p(m) = ⟨ψ|M †
mMm |ψ⟩

and the state after the measurement is:

Mm |ψ⟩√︂
⟨ψ|M †

mMm |ψ⟩

The measurement operator also has to satisfy the relation:

∑︂
m

M †
mMm = I

Notice that if to the last definition we add a constraint in which we require theMm to be orthogonal

projectors, that is, the Mm are Hermitian and MmM
′
m = δm,m′Mm, then this definition of measurement

is exactly the definition of projective measurement we already introduced. (the operator δm,m′ is known

as Kronecker delta and it is 1 when m = m′, 0 otherwise).

From this definition of measurement we can see that not only the ’statistics’ is given, but we also

have a definition of how the state changes after the measurement; in many cases, as we will also see in

this disseration, the post measurement state is not important beacuse the measurement is only made

once. For this kind of exepriments, the measurement formalism used is neither the general one we just

introduced nor the projective measurement, but is the POVM measurement. In this formalism, given a

collection {Mm}, for each m it is defined an operator Em as:

Em =M †
mMm

It’s pretty straightforward to see that
∑︁

mEm = I and that p(m) = ⟨ψ|Em |ψ⟩ for a given state |ψ⟩.
Thus the colletion {Em} is enough to compute the outcomes probabilities: the operators Em are known

as POVM elements while the entire collection {Em} is known as the POVM. Notice that if we define a

POVM starting from a projective measurament, we will obtain that Em = Pm, ∀m

As we already introduced, Einstein did not agree with QM. Moreover after the introduction of the

so-called Quantum Entaglement : it’s a phenomena that allows two or more particles to be put in a state

known as entangled, where the particle are someway bonded together. Until now, it looks something

normal but, if we split an entalged pair of particles keeping one here on the planet earth and sending

the other in the deep space (for example close to Betelgeuse) a spooky action pops up: if we measure

the particle we kept here on earth, the effect of the measurement is instantly seen also in the other

particle that is lightyears away from here! Quantum Entanglement is a really useful effect in quantum

computing, for example for the teleportation circuit.
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3.2 Handbook for Quantum Computing

The bit is the fundamental concept of classical computation and classical information. Quantum com-

putation is built upon an analogous concept, the quantum bit, or qubit for short.

The main difference between Quantum and classic computing is that the bit can be either in the state

0 or in 1 while the Qubit, exploiting the laws of the quantum realm, namely Quantum Superposition,

can be both 0 and 1 together until it is measured.

So, while a bit can be described using only one digit, 0 or 1, how do we describe a qubit that, how

we just said, can be 0 and 1 but can also be in a superposition state?

To answer this question we will use the space C2.

The quantum counterpart of the bit 0 and 1 are the two column vector |0⟩ , |1⟩ ∈ C2 defined as:

|0⟩ =

(︄
1

0

)︄
, |1⟩ =

(︄
0

1

)︄

The states |0⟩ , |1⟩ are also known as computational basis states and they form an orthogonal base for

C2.

A generic quantum bit |ψ⟩ is a superposition of |0⟩ , |1⟩, defined as:

|ψ⟩ = α |0⟩+ β |1⟩ (3.1)

where α, β ∈ C are called the amplitude of |0⟩ and |1⟩. What’s the meaning of those two complex

numbers? They actually hide the probabilistic nature of quantum computing: in fact, given a qubit |ψ⟩
as defined above, when it is measured we have a probability |α|2 to see 0 as a result and |β|2 to see

1 (notice how after introducing the concept of measuring we dropped the Dirac notation and actually

returned to classic 0 and 1). From that, it’s easy to see that both α and β cannot get any casual values

but they must satisfy the following:

|α|2 + |β|2 = 1 (3.2)

that can be described, geometrically, as the condition that the qubit’s state be normalized to length 1.

(A qubit state is a unit vector in a two-dimensional complex vector space)

The first thing implied by the constraint on α, β is that any operator applied on a qubit must preserve

the constraint (3.2): to obtain that the main way is to use always unitary operators (operators which

matrix is unitary) that also allow us to have reversible computations.

A natural question arising from the description we just gave of a qubit state is: if a bit can only be

in two states, how many state can assume a generic qubit described as in (3.1)? Let’s take a generic

qubit |ψ⟩ = α |0⟩ + β |1⟩; as we introduced in (2.2), we know that α, β ∈ C can be wrote using polar

coordinates:

α = rαe
iϕα

β = rβe
iϕβ
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Thus |ψ⟩ becomes:

rαe
iϕα |0⟩+ rβe

iϕβ |1⟩ (3.3)

If we now apply the constraint (3.2) to the description we just introduced of |ψ⟩ we obtain:

r2α + r2β = 1 (3.4)

We will now show how we derived this formula from (3.2). Let α = a+ ib (β is pretty the same):

|α| =
√︁
a2 + b2 Using polar coordinates

=

√︂
r2α cos

2 ϕα + r2α sin
2 ϕα

=

√︄
r2α

(︂
cos2 ϕα + sin2 ϕα⏞ ⏟⏟ ⏞

= 1

)︂
=
√︁
r2α

= rα

We showed that the norm of α is equals to rα, thus |α|2 = r2α.

Moreover, the equation in (3.4) actually describes all the points in the 1-radius circle for R2 and we

can then describe rα, rβ using a generic angle ρ:

rα = cos ρ

rβ = sin ρ

Thus, setting ρ = θ/2 we can rewrite (3.3) as:

|ψ⟩ = cos (θ/2)eiϕα |0⟩+ sin (θ/2)eiϕβ |1⟩

We can now also gather the terms of the kind eiϕ and setting φ = ϕβ − ϕα, γ = ϕα we obtain:

|ψ⟩ = eiγ
(︁
cos (θ/2) |0⟩+ eiφ sin (θ/2) |1⟩

)︁
From a physical point of view, the term eiγ is called global phase and it’s known to have no visible

effects on the measurement of a qubit (measuring |ψ⟩ and measuring eiγ |ψ⟩ is exactly the same). So,

there exists a one to one corrispondence between the description of a qubit |ψ⟩:

cos (θ/2) |0⟩+ eiφ sin (θ/2) |1⟩

and the points on a particular sphere known as Bloch Sphere. Therefore, it looks like we can encode

an infinite number of different combinations for the angle θ: that’s true but, from the rules of quantum

mechanics we know that the only way to obtain the informations from a superposition is through the

measuration process which outcome is always one single classic bit that can be either 0 or 1! So it’s

crucial to remember that even if we can have an infinite number of possibile superpostion for a qubit,

once it is measured the result is always one single classic bit.
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Figure 3.1: The Bloch Sphere

The generic quantum state we will refer to during this paper can be described as:

|ψ⟩ =
n∑︂

i=1

αi |qi⟩

where it must hold that:
n∑︂

i=1

|αi|2 = 1

where each |αi|2 is the probability that when |ψ⟩ is measured we get |qi⟩ as result.

3.3 Quantum and probabilistic computing

Before defining the differences between a classic, a Probabilistic and a quantum algorithm, let’s see what

is an algorithm. There are plenty of definitions, but the one we will use is:

An algorithm is a finite serie of instructions that, given some data in input, it transforms them in a

output result

So, an algorithm is just like a function that, starting from a domain (input data), gives us a value

inside a codomain (output data). The easiest algorithm is the one that creates the identity function:

given a number x ∈ {0, 1} it gives us the value of x as result.

f : {0, 1} → {0, 1}

We can think that any function can be computed with algorithm: actually, it has been proved in

1936 that not all the functions that we can think can be computed with an algorithm: for example,

there is no algorithm that takes in input one other algorithm and tells us if the algorithm ends or no.

We’ll see that the set of the computable functions has well known bounds.

But, how many types of algorithm can we write? Before Quantum Computing there were two types:

1. Deterministic algorithms: the algorithm has one ’way’ to solve a problem and the solution is

correct in 100% of cases. A classic algorithm follows a finite sequence of instructions that gives us

the result. If we describe every instruction of the algorithm as a vertex, the execution of classic



3.3 Quantum and probabilistic computing 19

algorithm could be plotted as a one-way connected list of vertex: every vertex has one incoming

edge (except for the Input vertex) and one outcoming edge (except for the Output Vertex)

2. Probabilistic algorithms: the algorithm has many paths it can follow, and each possible path

has a probability to be followed. The result is not always right, we will see when a Probabilistic

algorithm is defined as ’good’ and when no. As before, let’s imagine every instruction of the

algorithm as a vertex but in this case, every vertex is not connected to just one another vertex,

but it can be connected to many. So, each vertex can have many incoming edges (except for the

input vertex) and can have many outcoming edges (except for the output vertex). Each vertex

has a weight: if the vertex e goes from u to v, then the weight of e is the probability that, once

the algorithm has executed the instruction described by node u, it executes, as next operation

the instruction decribed by node v. And so, referring to a classic mathematical structure, the

execution of a Probabilistic algorithm can be seen as a weighted graph.

When talking about a classic algorithm we know that, if we reach a result, it is correct in the 100%

of cases, in the case of a Probabilistic algorithm the probability that we get the right result is given by

probaility theory.

Let’s take a generic Probabilistic algorithm, let’s call it A. This algorithm has n different paths that

it can take, but just m of them give us a correct result. Each of these paths is made by some edges,

where each edge has a weight

We can know extend the definition of weigth: we will call weight of a path the product of the weights of

all the edges that form the path (this is just the probability of following the entire path edge by edge).

Given a path P , we will refer to its weight as W (P ).

So, we know that, in the A algorithm we have m paths that, during the execution can lead us to a

correct output. What is the probability that we actually get a correct output? Let’s enumerate all the

m paths as P1, P2, ..., Pm, then the probability that the algorithm A gives us a correct answer is given

by this formula:
m∑︂
i=1

W (Pi) (3.5)

It may look trivial, but, if at least one of the m path has a non-zero weight, then we get a non-zero

probability of having the right output. Obviosly, before things gets creepy, it’s important to say that:

In a probabilistic algorithm, there are many paths that can be followed, but during the execution just

one of them is followed

Now that we introduced classic and probabilistic algorithm, let’s see which changes quantum com-

puting has brought to this matter. The execution of a Quantum algorithm can be seen (graphically) as

the execution of a probabilistic one (in what concern probabilities, edges and vertex). But, there are

some differences:

1. the weight of each edge is not a probability but it’s a probability amplitude and, as we saw before,

probability amplitudes are complex numbers. So, the function that associates to each edge a

weight has a new codomine: C.
We will see that this change of codomine will give us an unexpected result because of minus sign

that products between complex numbers generate.
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2. while the weight of a path is always calculated as a product (in this case of probability amplitudes

instead of simple probabilities) but the probability that we got with (3.5) changes its formula (we

use the same hypotesis as for (3.5)) and becomes:⃓⃓⃓⃓
⃓
m∑︂
i=1

W (Pi)

⃓⃓⃓⃓
⃓
2

(3.6)

3. Last (but not least) difference is that, whereas in a probabilistic algorithm, between all the paths

only one is actually followed, in a quantum algorithm (because of quantum mechanincs rules) all

the paths are followed and together executed: just in the end, when we watch the result we make

the system collapse in one single result, but until we don’t measure it all the possible results exist

together!

.

Maybe, those three differences, taken one by one, could make you think that, beside some maths,

there is no difference between a probabilistic and a quantum algorithm: but take a look to this 3 togheter.

The consequence is a strange phenomena called ’quantum interference’: while in a probabilistic algorithm

if even only one of the probabilities Pi in (3.5) is non-zero then we have a non-zero probability to get the

right output, in a quantum algorithm that’s not true! and the reason is that sometimes the probabilities

in (3.6) cancel out each other. This is due to the fact that for quantum algorithm we do not talk about

simple probabilities, but we are using complex numbers and, multiply complex numbers generate minus

signs that make separated paths to intefere with others. So, we can get a quantum algorithm where we

have two paths (P1, P2) with non-zero probability to get to the output (W (P1),W (P2) > 0), but (3.6)

gives us a 0 result. This, because we have

W (P1) = c

And

W (P2) = −c

and if we put W (P1),W (P2) in (3.6) we get⃓⃓⃓⃓
⃓
m∑︂
i=1

W (Pi)

⃓⃓⃓⃓
⃓
2

= with m = 2

= |W (P1) +W (P2)|2

= |c+ (−c)|2

= |0|2

= 0

Let’s give an example to better understand this critical concept. Looking at picture (3.5), we can

see a simple quantum machine with its probability amplitudes. We will use this notation:

cij is the probability amplitude to get to output j with input i.
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Figure 3.2: A simple Quantum machine decribed as a graph

In this case we have:

c00 = i/2, c01 = 1/2, c10 = 1/2, c11 = i/2

In this particular case, the machine at picture 4.1 is also known as Random bit because given in in-

put a bit, it gives us in output a bit that is 0 or 1 with the same probability, so it’s an example of

true randomness in the world of Computer Science (true randomness cannot be achieved in classic

computation).

So, let’s imagine to put two copies of this machine in serie (connecting the output of the first as

input for the second). Now, we want to compute the probability of getting a 0 output giving 0 as input

in this new machine. If we look at it, we have two paths that can lead us to the wanted result:

1. 0 → 0 → 0, we will call it P1

2. 0 → 1 → 0, we will call it P2

So, the m we are gonna use for (4.2) is 2 (becase of two good paths).

Let’s calculate P1 and P2.

P1 is made of two edges: the one that brings from 0 to 0, and one other from 0 to 0, so, it’s weight is

W (P1) = c00 · c00 = i/2 · i/2 = −1/4

P2 is made of two edges too: the one that brings from 0 to 1, and then the one that brings from 1 to 0

W (P2) = c01 · c10 = 1/2 · 1/2 = 1/4
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Now, applying (4.2) we get that, the probability of going from 0 input to 0 output is⃓⃓⃓⃓
⃓
m∑︂
i=1

W (Pi)

⃓⃓⃓⃓
⃓
2

= with m = 2

= |W (P1) +W (P2)|2

= |−1/4 + 1/4|2

= |0|2

= 0

And, as we wanted to show, there are case in which, non-zero weights for single paths bring us to zero

probability after applying (4.2).
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Quantum Finite Automata

4.1 Simulating a Quantum System

The first physicist who sayd that a Quantum Computer was able to simulate things that a normal com-

puter could not was Richard Feynmann. During one of his lecture, Feynmann described how physicists

use computers to do simulations: sometimes they want to do tests before trying the experiment for real,

or maybe they don’t have access to the system so they fake it using computers simulation. But, can a

normal computer simulate every physical system? Feynmann supposed that the amount of memory and

computing capability may be enough to simulate planets, or the motion of galaxies: but what about

quantum systems? When talking about quantum realm, the main feature is the Superposition Principle:

for example, a quantum system of electrons or protons can exist in a superpostion of observable states

before the measure. So we must keep track of all the probabilities: usually, with a classical computers,

to keep track of n particles in a quantum system we need an amount of memory that is in the order of

2n and these number become really big in a really short time. The solution Feynmann gave was that, if

the problem is to simulate quantum systems, why don’t we use them as computing power? Qubits can

keep track of the probabilities better than normal bits, because it’s their nature to behave like quantum

particles. So, if we suppose that each Qubit keep track of the probability of one quantum particle in the

quantum system we described before, then we should need just n Qubit (one per particle). So, theorical

physicists and computer scientists started to work on a model of Finite State Automata but based on

Quantum Mechanics: Quantum Finite State Automata

4.1.1 Quantum Automata

The first, and most generic definition of Quantum Automata (notice that we are not assuming it to

be Finite) was given in the 1997 in [10]. In this paper, a Quantum Automata is defined as Real Time

Quantum Automaton

Q = (H, sinit, Haccept, Paccept, A, U), where:

• H is a Hilbert Space

• sinit is the initial state vector (obviously sinit ∈ H) and ∥sinit∥2 = 1

• Haccept is a subspace of H
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• Paccept is an operator projecting on Haccept

• A is the input alphabet

• U = {Ua | a ∈ A} is a set of unitary operators, namely one for each symbol in A. Every Ua ∈ U
is called transition matrix.

Given a word w = w1w2 . . . wn ∈ A∗, we define Uw as:

Uw = Uwn . . . Uw2Uw1 , Uwi ∈ U ∀i = 1, 2, . . . n (4.1)

This is the unitary transformation applied to sinit while reading the input w. The language accepted

from a Quantum Automata Q is then defined as the function:

pQ(w) = ∥PacceptUwsinit∥2 = ∥Paccept |sw⟩ ∥2 (4.2)

if we define |sw⟩ = Uwsinit The formula we just introduced can be described as: the computation starts

with the state |sinit⟩, then, while the input w is read, the Unitary Operators associated with the symbols

are applied to the current state and in the, to compute the probability that the state obtained (that

can, and pretty always be, a Superposition) is in Haccept we use the projection operator Paccept and then

measure the norm.

If we look at the definition given in [10], we see that the definitions for (4.1) and (4.2) are different: the

differences come from how (4.1) is defined. In [10], in fact, Uw is defined as the product Uw1Uw2 . . . Uwn ;

that kind of structure is used to make it look similar to the actual process of input reading from left to

right. This help that is given to the reader has an impact on (4.2): the state used in the begginig is not

|sinit⟩, but is actually ⟨sinit| : no matter of Uw is defined, the order of the operator applied has always

to follow the order of the input symbols! (First has to be applied the operator for w1, then the one for

w2 and so on).

After this little discussion, we can further analyze (4.2): the first main difference that has to be seen

between a language accepted from a classic Automata and a Quantum One is its probabilistic Nature.

In fact, while for a classic automata we know exactly if a word is either accepted or not (it’s a true /

false decisione), here we cannot talk absolutely but we have to talk in matter of probabilities due to the

probabilistic nature of Quantum Mechanics.

The second main topic to discuss about (4.2) is: what does applying Uw to |sinit⟩ do? The effect of

the matrix product Uw = Uwn . . . Uw2Uw1 (thinking about how matrix product is defined) is to sum over

all possible path that the automata can take given the input word w (think about superposition: every

possible path must have a probability to be taken). Each of this paths, as we saw in the section about

differences between probabilistic and quantum computing, has a complex amplitude that is the product

of the amplitudes at each step of computation.

We will use the notation U
si,sj
a to define the component of Ua that describes the probability amplitude

of moving to state sj while being in state si and the current input symbol is a. (Can be seen as the

probability used to label edges in markov chains).
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Given Uw for a generic word w, the initial state s0 and a final state sw we can state that:

U s0,sw
w =

∑︂
s1,s2,...,s|w|−1

U s0,s1
w1

U s1,s2
w2

. . . U
s|w|−1,s|w|
w|w| (4.3)

By giving a look a the formula above, we can see that the component for the pair s0, sw in Uw is actually

the sum over all possible choices for s1, s2, . . . , s|w|−1 (obviously given from the sum operator) of the

amplitude of a chosen path: in fact, if we look at the body of the sum operator, we see that once a value

for s1, s2, . . . , s|w|−1 is chosen (namely ŝ1, ŝ2, . . . ŝ|w|−1) then the body is actually the amplitude of the

path ŝ1 → ŝ2 → . . . ŝ|w|−1. What can happen in the computation of Uw is the Quantum Interference

phenomena: in fact, as we saw in the section about quantum and probabilistic computations, the paths

in a quantum computation can cancel out each other in the sum over all the possible paths.

It’s pretty difficult to find resemblance from the definition we just gave and the automata we are

used to see: in fact, the finite-state machine we always studied are, as in the name, finite. The quantum

analog of finite-state machine are called Quantum Finite Automata, and are defined in [10] as:

Definition 4.1.1. A quantum finite-state automaton (QFA) is a real-time quantum automaton where

H, sinit, and the Ua all have a finite dimensionality n. A quantum regular language (QRL) is a quantum

language recognized by a QFA.

Here we have no big results about relationships between classical languages and languages recognized

by QFA, but a lot of closure properties for QFA were provided.

Closure Properties of QRLs

In this first introduction to Quantum Automata, the function pQ(w) has been threated by its ’numerical’

meaning and not translating it into a characteristic function for a language in a more computer science

fashion.

First, as in [10], we define two operations on quantum automata that allow us to add and multiply

quantum languages.

Definition 4.1.2. If u and v are vectors of dimension m and n, respectively, their direct sum u⊕ v is

the (m + n)-dimensional vector (u1, u2, · · ·um, v1, v2, · · · vm). If M and N are two matrices then their

direct sum is defined as M ⊕N =

(︄
M 0

0 N

)︄
Then if Q and R are quantum automata with the same input alphabet, and if a and b are complex

numbers such that |a|2 + |b|2 = 1, the weighted direct sum aQ + bR is a brand new quantum automata

that has initial state ŝinit = asQinit ⊕ bsRinit, projection operator P̂ accept = PQ
accept ⊕ PR

accept, and transition

matrices Ûaccept = UQ
accept ⊕ UR

accept

Lemma 2. If Q and R are two QFA and |a|2 + |b|2 = 1, then aQ ⊕ bR is a QFA and faQ⊕bR =

|a|2fQ + |b|2fR. Thus if f1, f2, . . . , fk are QRLs and c1, c2, . . . , cn are real constants such that ci >

0 ∀i ∈ 1, 2, . . . n and
∑︁n

i=1 ci = 1, then also
∑︁n

i=1 cifi is a QRL.

Definition 4.1.3. if u and v are vectors of dimension m and n respectively, then their tensor product

u⊗ v is the mn-dimensional vector w, where w(i,j) = uivj and (i, j) = n(i− 1)+ j. If M and N are two
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matrices with dimension m ×m and n × n respectively, then M ⊗ N is the mn ×mn matrix O where

each element is defined as O(i,k),(j,l) = MijNkl; then, if Q and R are quantum automata with the same

input alphabet, Q⊗R is defined by taking the tensor products of their respective sinit, Paccept and the Ua.

Lemma 3. If Q and R are QFAs, then Q⊗R is a QFA and fQ⊗R = fQfR. Therefore, the product of

any number of QRLs is a QRL.

Lemma 4. For any c ∈ [0, 1], the constant function f(w) = c is a QRL.

Lemma 5. If f is a QRL, then f̄ = 1− f is a QRL.

Theorem 6 (Pumping Lemma for QRLs). If f is a QRL, then for any word w and any ϵ > 0 there is

a k such that

|f(uwkv)− f(uv)| < ϵ

for any pair of words u, v. Moreover, if the automaton for f has n−dimensionality (the transition

matrices Ua has dimension n) there is a constant c such that k < (cϵ)−n

We will then refer to finite version of this model of automata as Measure Once Quantum Finite

Automata.

4.2 1-way Quantum Finite Automata

Independently from [10], Quantum Finite Automata were introduced in the same year also in [7].

In [7], a MM-QFA is defined as a 6-tuple M = (Q,Σ, δ, q0, Qacc, Qrej) where:

• Q is a finite set of states

• Σ is the finite input alphabet

• δ is the transition function

• q0 ∈ Q is the initial state

• Qacc ⊆ Q is the set of accepting state

• Qrej ⊆ Q is the set of rejecting state

From Qacc and Qrej we can define the set Qnon as:

Qnon = Q \ (Qacc ∪Qrej)

containing all the non-halting states; it’s supposed that the element in Qacc ∪ Qrej are halting states,

Qacc ∩Qrej = ∅ and that q0 ∈ Qnon.

The Hilbert Space HQ = span{|q⟩ | q ∈ Q} (with ∥v∥ = 1 ∀v ∈ HQ, (it’s also called l2(Q)) can be

splitted in 3 subspaces:

Eacc = span{|q⟩ | q ∈ Qacc}

Erej = span{|q⟩ | q ∈ Qrej}

Enon = span{|q⟩ | q ∈ Qnon}
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and correspondingly there are three projectors Pacc, Prej, Pnon onto the three subspaces, respectively.

Thus {Pacc, Prej, Pnon} is a projective measurement on HQ.

Moreover, we need to add to the alphabet Σ two symbols κ, $ being the left and right end marker

for the tape: the new alphabet Γ = Σ ∪ {κ, $} is called the working alphabet.

A state |ψ⟩ of M is a superposition of states in Q:

|ψ⟩ =
∑︂
qi∈Q

αi |qi⟩, αi ∈ C (4.4)

where, eventually, some αi can be 0.

We can now introduce how δ is defined for a generic MM-QFA.

In [7], the definition of δ for MM-QFA is derived from the definition of the 2-way QFA version: to have

a dependecy free description, we will take it from [1];

in [1], it is defined as a function δ : Q×Γ×Q→ C where the value of δ(q1, a, q2) is the amplitude of the

state |q2⟩ in the superposition of state that M reaches when it is in the state |q1⟩ and the input symbol

is a. We can now define the operator Va (with a ∈ Γ) that acts as the generalization of δ: while the

latter takes as input both the starting and the ending state, the former is used to describe the whole

superposition obtained starting from a specific state |qi⟩ and reading a specific symbol a ∈ Γ:

Va(|qi⟩) =
∑︂
qj∈Q

δ(qi, a, qj) |qj⟩ (4.5)

Its a basic requirement that all the Va are unitary (to keep the norms sum up to 1).

Once we have defined Va, we can see how it is used to create an actual computation. At the beginning,

the state is |q0⟩. Let’s suppose we are in a generic step of computation for an input word w, the actual

state of M is a generic superposition |ϕ⟩ =
∑︁

qi∈Q αi |qi⟩ and we read the symbol x ∈ Γ;

first of all, Vx is applied to |ψ⟩ obtaining a new state |ψ′⟩ defined as:

⃓⃓
ψ′⟩︁ = Vx(|ψ⟩) =

∑︂
qi∈Q

αiVx(|qi⟩)

Before explaining how the computation step is ended, we have to introduce the notion of Observable

for a MM-QFA.

An Observable O for MM-QFA is actually a decomposition of HQ into m subspaces E1⊕E2⊕· · ·⊕Em =

HQ, where the Ej are pairwise orthogonal: to each j = 1, 2, . . .m will correspond a different outcome.

Let’s suppose a generic MM-QFA is in the superposition |ϕ⟩, then observing it using an observable O

will result in one of these outcomes and |ϕ⟩ will be modified; in particular, let |ϕj⟩ be the projection

of |ϕ⟩ in Ej (if we suppose that each Ej has an associated projection matrix Pj , then |ϕj⟩ = Pj |ϕ⟩),
thus |ϕ⟩ can be rewritten as

∑︁m
j=1 |ϕj⟩; the result of the measuration of |ϕ⟩ using O has the following

Properties:

• it is completely (and truly) random, each component |ϕj⟩ has a probability || |ϕj⟩ ||2 to be seen

• Immediately after the observation, the M ’s superposition collapses to 1
|| |ϕj⟩ || |ϕj⟩ where j is the

the particular outcome observed
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Returning to our computation, after obtaining |ϕ′⟩, it is measured (observed) using the Observable

Eacc ⊕ Erej ⊕ Enon. This observation gives a result x ∈ Ej with a probability that is equal to the

amplitude of the projection of |ϕ′⟩ in the subspace Ej namely, ∥Pj |ϕ′⟩ ∥2;
after this operation is performed, the superposition collpses to the projection stated above: in this case,

if we get |ϕ′⟩ ∈ Eacc or |ϕ′⟩ ∈ Erej the input is accepted or rejected rispectively. If instead, |ϕ′⟩ ∈ Enon,

then the operations are re-executed. If, wlog, the superposition of a MM-QFA is:

⃓⃓
ϕ′
⟩︁
=

∑︂
qi∈Qacc

αi |qi⟩+
∑︂

qj∈Qrej

βj |qj⟩+
∑︂

qk∈Qnon

γk |qk⟩ (4.6)

then after the observation we just described we could get an accepting state with probability
∑︁
|αi|2, a

rejecting state with probability
∑︁
|βj |2 and the computation continues with probability

∑︁
|γk|2. In the

last case, the system collapses to the state |φ⟩
|| |φ⟩ || where |φ⟩ =

∑︁
qk∈Qnon

γk |qk⟩ (the operation we just

made on |ψ⟩ is called normalization and it’s made so the probabilities sum up to 1).

To better explain the above notation, we will provide an example. Let M = (Q,Σ, δ, q0, Qacc, Qrej))

be a MM-QFA defined as just introduced, where:

• Q = {q0, q1, qacc, qrej}

• Σ = {a}

• q0 is the initial state.

• Qacc = {qacc}

• Qrej = {qrej}

We shall now define the transition function δ. Since defining it case by case would make example

pretty heavy, we will define it using the Vx notation:

Va(|q0⟩) =
1

2
|q0⟩+

1

2
|q1⟩+

1√
2
|qrej⟩

Va(|q1⟩) =
1

2
|q0⟩+

1

2
|q1⟩ −

1√
2
|qrej⟩

V$(|q0⟩) = |qrej⟩

V$(|q1⟩) = |qacc⟩

There are some transitions that we have not described, for example the cases were the input for V is

|qacc⟩. This because, when the measurement is made, if the state is projected in the Enon subspace,

then all the components of |qacc⟩ are dropped; so in the next step, we will have a superposition that

presents only either q0 or/and q1. On the other hand, if the state is projected in the Eacc subspace, the

computation ends and of course we don’t need the transition V anymore. (the same idea can be moved

to the case of |qacc⟩).
Next, we show how this automaton behaves on input word x = aa. (which is trasformed to the word

x = aa$) The automaton starts in |q0⟩; then Va is applied an what we obtain is 1
2 |q0⟩+

1
2 |q1⟩+

1√
2
|qrej⟩.

This state is observed and two outcomes are possible:
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• with a probability
(︂

1√
2

)︂2
= 1

2 , a rejecting state is observed. In this case, the superposition collpses

to |qrej⟩, the word is rejected and the computation terminates.

• otherwise, with a probability (12)
2+(12)

2 = 1
2 , a non-halting state is observed and the superposition

collapses to 1
2 |q0⟩+

1
2 |q1⟩ and the computation continues

If the computation continues from the previous step, Va is applied again, obtaining the superposition:

Va(
1

2
|q0⟩+

1

2
|q1⟩) =

1

2
Va(|q0⟩) +

1

2
Va(|q0⟩)

=
1

2
(
1

2
|q0⟩+

1

2
|q1⟩+

1√
2
|qrej⟩+

1

2
|q0⟩+

1

2
|q1⟩ −

1√
2
|qrej⟩)

=
1

2
(|q0⟩+ |q1⟩)

=
1

2
|q0⟩+

1

2
|q1⟩

From which we can state that Va maps the state 1
2 |q0⟩+

1
2 |q1⟩ to itself. Of course in this case we have 0

probability of both accepting and rejecting since there are no components of qrej and qacc, which means

that the superposition remains unchanged. In the last step, we apply the operator V$, mapping the

superposition to 1
2 |qacc⟩ +

1
2 |qrej⟩. This is observed: with probability 1

4 we observe the state qrej and

with probability 1
4 we see the state qacc. As we will see after this example, MM-QFA also comes with

a concept of total state, that is used as an ’accumulator’ for the acceptance and rejection probability

that can be encountered during a computation; in this case, the total accepting probability is just 1
4

(from the last step), while the rejection probability is 1
2 (from the first step) + 1

4 (from the last step) =
3
4 .

Moreover, if we define the set V = HQ×R×R then the total state of a MM-QFA can be described

as a triple inside V.
A Machine M with state (ψ, pacc, prej) ∈ V has an acceptance probability pacc, rejection probability prej

and neither with probability ∥ψ∥2 (and the current superposition of internal states is |ψ⟩). For each

σ ∈ Γ there exists an operator Tσ : V → V that describes the evolution of the machine from a generic

state to a new one after reading the symbol σ defined as:

Tσ(ψ, pacc, prej) = (PnonVσ(ψ), ∥PaccVσ(ψ)∥2 + pacc, ∥PrejVσ(ψ)∥2 + prej)

For a word x = σ1σ2 · · ·σn ∈ Γ∗, we define Tx = TσnTσn−1 · · ·Tσ1 ; so, if for example (ψ, pacc, prej) =

Tκw$(|q0⟩ , 0, 0) then the quantum automata M accepts w with probability pacc and rejects it with

probability prej. Therefore, we define a norm on V as

∥(ψ, pacc, prej)∥ =
1

2
(∥ψ∥+ pacc + prej)

and let B = {v ∈ V | ∥v∥ ≤ 1}. A trivial calcucation reveals that there exists a fixed constant c such

that ∥Txv − Txv′∥ ≤ c∥v − v′∥, ∀v, v′ ∈ B and x ∈ Γ∗.





5
About acceptance conditions

While introducing the defintions for Measure Once Automata (QFA) we deliberately avoided to introduce

the definition of language accepted. In Quantum Automata theory a lot of definitions for language

acceptance are used. We are going to introduce a serie of definitions and theorems to describe most of

them [4].

Definition 5.0.1 (cut-point). A language L is said to be accepted by a QFA A with cut-point λ iff

L = {w ∈ Σ∗ | pA(w) > λ}

Definition 5.0.2 (Isolated cut point). Let L be a language accepted with cut-point λ. If there exists

ϵ ∈ (0, 1/2] such that

|pA(w) ≥ ϵ| ∀w ∈ Σ∗

then we say that λ is isolated by ϵ

The relevance of isolated cut point acceptance on finite automata is due to the fact that, in this

case, we can arbitrarily reduce the classicification error probability of an input word w by repeating a

constant number of times its parsing and taking the majority of the answers.

An acceptance model that is considered to be more reliable than the isolated cut point is the Monte

Carlo.

Definition 5.0.3 (Monte Carlo). Let L be a language. L is said to be accepted by a QFA A in Monte

Carlo mode iff there exists ϵ ∈ (0, 1/2] such that:

w ∈ L→ pA(w) = 1 (5.1)

w /∈ L→ pA(w) ≤ ϵ (5.2)

(5.3)

Moreover, we can introduce one last definition of acceptance called with bounded error.

Definition 5.0.4 (with bounder error). a QFA A is said to accept a language L with a bounded error
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ϵ ∈ [0, 1/2) iff

w ∈ L↔ pA(w) ≥ 1− ϵ (5.4)

w /∈ L↔ pA(w) ≤ ϵ (5.5)

(5.6)

There exists a clear and well defined equivalence between acceptance with bounded error and isolated

cut point.

Theorem 7. An acceptance with bounded error ϵ is equivalent to an acceptance with cutpoint 1/2

isoltated by 1/2 - ϵ.

Proof. By definition, we know that with acceptance with cutpoint 1/2 isolated by 1/2 - ϵ these two

following conditions hold:

L = {w ∈ Σ∗ | pA(w) > 1/2} (5.7)

|pA(w)− 1/2| ≥ 1/2− ϵ ∀w (5.8)

If we take the second condition, we know that pA(w) − 1/2 > 0 iff pA(w) > 1/2, which holds ∀w ∈ L.
Under this assumptions 5.8 can be rewritten as:

pA(w)− 1/2 ≥ 1/2− ϵ = pA(w) ≥ 1− ϵ ∀winL

In the other case, if the take pA(w)− 1/2 ≤ 0, it holds iff pA(w) ≤ 1/2 leading to w /∈ L. Thus 5.8 can

be rewritten as:

−pA(w) + 1/2 ≥ 1/2− ϵ = pA(w) ≤ ϵ ∀w /∈ L

If we look at the results we got, they are exactly the condition necessary to define an acceptance

with bounded error.

Theorem 8. An acceptance with cut point 1/2 isolated by ϵ coincide with the acceptance with bounded

error 1/2 - ϵ.

Proof. By definition, we know that in acceptance with bounded error the two following hold (doing a

substitution of the actual error):

w ∈ L↔ pA(w) ≥ 1/2 + ϵ (5.9)

w /∈ L↔ pA(w) ≤ 1/2− ϵ (5.10)

(5.11)

Looking at the first condition, we know that ∀winL:

pA(w) ≥ 1/2 + ϵ = pA(w)− 1/2 ≥ epsilon

which also leads to pA(w) ≥ 1/2 ∀winL.
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Looking at the second condition, ∀w /∈ L it holds to:

pA(w) ≤ 1/2− ϵ = −(pA(w)− 1/2) ≥ ϵ

and it also leads to pA(w) < 1/2 ∀w /∈ L.
It’s straightforward to see that it all yields to:

L = {w ∈ Σ∗ | pA(w) > 1/2}

which defines an acceptance with cut point 1/2. Moreover, we have that:

|pA(w)− 1/2| ≤ ϵ

that holds for both w ∈ L and w /∈ L. Thus, we have achieved an acceptance with cut-point 1/2 isolated

by ϵ

Moreover, we can introduce a result about cut point isolated with λ ̸= 1/2 taken from [9].

Theorem 9. The acceptance with cut point λ isolated by ϵ is equivalent to an acceptance with cutpoint

λ isolated by:

⎧⎨⎩
ϵ

(2(1−λ)) ifλ < 1/2

ϵ
(2λ) ifλ > 1/2

Using this theorem, we can conclude that

Theorem 10. The acceptance with cut point λ isolated by ϵ is equivalent to an acceptance with a bounded

error

⎧⎨⎩
1
2 −

ϵ
(2(1−λ)) ifλ < 1/2

1
2 −

ϵ
(2λ) ifλ > 1/2

Proof. Using 9 we know that we can move from an acceptance with cut point cut point λ isolated by ϵ

to a cut point 1/2 isolated by ϵ′. Then, using 8 we can move from a cut point 1/2 isolated by ϵ′ to a

bounded error 1/2 - ϵ′. Doing an easy substitution it yields to the result of the theorem.

A last definition is called acceptance with probability :

Definition 5.0.5. A MM-QFA M recognizes a language L with propability p

• if it accepts any string x ∈ L with a probability > p

• if it accepts any word y /∈ L with a probability that is ≤ p.

If we refer to the language L recognized by a MM-QFA M without specific p, then we refer L to a

language accepted from M with some probability 1
2 + ϵ, with ϵ > 0.





6
Characterization of expressive power

In this chapter we will describe the results obtained throughout the years about acceptance power of

both MO-QFA and MM-QFA.

6.1 Measure Once Quantum Finite Automata

6.1.1 MO-QFA

A MO-QFA M is a quintuple (Q,Σ, δ, q0, F ) where Q is the set of states, Σ is the alphabet (united

with the end marker $), δ is the transition function, q0 is the initial state and F the set of final state. δ

is defined as a function going from Q× Σ×Q to C and describes the probability of going from state q

to q′ after reading a symbol in Σ. The δ function has to be unitary, so it has to respect the condition:

∑︂
q′∈Q

δ(q1, a, q′)δ(q2, a, q
′) =

⎧⎨⎩1 if q1 = q2

0 otherwise

The δ function as defined above is actually obtained through a set of unitary matrices {Ua}a∈Σ, where
Ua represents the unitary transition of M applied after reading a. So, given a generic state |ϕ⟩ =∑︁

qi∈Q αi |qi⟩ of M , reading a symbol a means (in term of Ua):

⃓⃓
ϕ′
⟩︁
= Ua |ϕ⟩ =

∑︂
qi,qj∈Q

αiδ(qi, a, qj) |qj⟩

As for the definition of QFA provided in [10], the measurement is taken only at the end of the

computation; the measurement is described through a projection matrix P =
∑︁

k∈F |k⟩ ⟨k| and the

probability of M accepting a word x is given by:

pM (x) = ||PUx |ϕ⟩ ||2 =
∑︂
kinF

|(Ux |ϕ⟩)k|2

where

• Ux = Ux|x| . . . Ux2Ux1
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• (Ux |ϕ⟩)k denotes the k-th component of the vector |ϕ′⟩ = Ux |ϕ⟩

6.1.2 Splitting Languages accepted from MO-QFA

The class of languages accepted from a QFA in [5] is then splitted in classes. The first class introduced is

the RMOϵ: it contains all the languages that can be accepted from a MO-QFA with cut-point isolated

by a margin at least ϵ. From this definition we can also derive the definition of a new class, RMO,

defined as:

RMO =
⋃︂
ϵ>0

RMOϵ

If we set ϵ = 0 we obtain the language RMO0 = UMO.

One of the results that were achieved in [5], is to define that RMO is actually equals to the set of

languages acceptable from RFAs. Restricting MO-QFAs to accept with bounded error greatly reduces

their accepting power; Since MM-QFAs can accept only a proper subset of the regular languages if they

are required to accept with bounded error and since every MO-QFA can be simulated exactly by an

MM-QFA, the class RMO is a proper subset of the regular languages.

Theorem 11. The class RMO is exactly the class of languages accepted by RFAs.

Two lemmas useful to prove this statement are:

Lemma 12. Let U be an unitary matrix. For any ϵ > 0 there exists an integer n > 0 such that for all

vectors x, with ||x|| ≤ 1, it is true that ||(I − Un)x|| < ϵ

Lemma 13. Let |ϕ⟩ and |ψ⟩ be two complex vectors such that || |ϕ⟩ || = || |ψ⟩ || = 1, and || |ϕ⟩ −
|ψ⟩ || ≤ ϵ. The total variation distance between the probability distributions resulting from the measure-

ment of |ϕ⟩ and |ψ⟩ is at most 4ϵ.

From the theorem 11, it follows that RMOϵ = RMOϵ′ for all ϵ, ϵ
′ > 0. So, we can conclude that the

class of languages recognizable from a MO-QFA are actually two: RMO and RMO0 = UMO. From

theorem 11 it also follows that:

Theorem 14. RMO class is closed under Boolean operations, inverse homomorphisms and word quo-

tient. It is not closed under homomorphisms.

Now, the question that follows pretty naturally is:

which is the relation between RMO and UMO? Let’s consider the language L = {x ∈ {a, b}∗| |xa| ̸=
|xb|}: it’s shown in [5] that there exists a MO-QFA that accepts L with cutpoint = 0.

Proof. The matrix Ua is defined as a rotation matrix for the initial state |q0⟩; Ub is defined through

the relation U−1
b = Ua so that applying Ub would ’undo’ a rotation madre through Ua (and viceversa).

So, if the operators Ua and Ub are applied the same number of times (|xa| = |xb|), then the state of

the machine would remain |q0⟩ with a 0 probability of acceptance. While, if the number of times Ua

is applied is bigger than the times Ub is applied (or viceversa) we will have a non-zero probability that

once the measuration is done we will get the state |q1⟩
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From that proof we can derive that inside UMO there are also languages that are not regular.

Therefore, the relation between RMO and UMO is as follows:

RMO ⊂ UMO

In the end, we can link the MO-QFAs to the PRFAs using the following theorem:

Theorem 15. Let L be a language accepted by MO-QFA M with cut-point γ:

1. Then there exists a PRFA accepting same language with cut-point γ′

2. If M accepts L with bounded error, then there exists a PRFA accepting L with bounded error

6.1.3 UMO expressive power

As shown in 6.1.2, there are non regular languages which can be recognized by MO-QFA if they are

allowed to accept without bounded error. (i.e. inside the class UMO) A natural question arises: what

is the exact characterization of the class UMO?

This question has been answered in [3]. To prove the theorem we will need the following lemma:

Lemma 16. if M is any unitary matrix of order m over the complex field and Im is the identity over

Cm, then for any ϵ there exists v ∈ N such that it holds

∥Mv − Im∥ ≤ ϵ

The Characterization of UMO can be done using the following:

Lemma 17. if L is a language accepted by a MO-QFA A, then for each x ∈ Σ∗ and for every w ∈ L,
there exists a positive integer v such that

wxv ∈ L

Proof.

|pA(w)− pA(wxv)| =
⃓⃓⃓⃓∑︂
k∈F

(|(Uw |ϕ⟩)k|2 − |(Uwxv |ϕ⟩)k|2)
⃓⃓⃓⃓

≤ 2
∑︂
k∈F

⃓⃓
|(Uw |ϕ⟩)k| − |(Uwxv |ϕ⟩)k|

⃓⃓
≤ 2

∑︂
k∈F
|(Uw |ϕ⟩)k − (Uwxv |ϕ⟩)k|

= 2
∑︂
k∈F
|(((I − (Ux)

v)Uw) |ϕ⟩)k|

≤ 2
∑︂
k∈F
∥(I − (Ux)

v)∥

= 2|F |∥(I − (Ux)
v)∥
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Since w ∈ L, then pA(w) > λ and we can set pA(w) − λ = δ > 0. By lemma 16 we know that there

exists some v̂ such that:

∥I − (Ux)
v∥ ≤ δ

4|F |

which yields to

|pA(w)− pA(wxv)| ≤
δ

2

Thus, we can conclude that wxv ∈ L since:

pA(wx
v)− λ ≥ pA(w)−

δ

2
− λ ≥ δ

2
≥ 0

From the last lemma we can derive two useful theorems

Theorem 18. MO-QFA accepting with cut point not isolated can accept only the empty language or

languages containing an infinite number of words.

Theorem 19. UMO is not closed under complementation.

6.2 Measure Many Quantum Finite Automata

6.2.1 MM-QFA

As we said above, the definition of MM-QFA is exactly the same as the one we described in 4.2.

6.2.2 Properties for MM-QFA

A first result that was given inside [7] about language accepted from MM-QFA is the following:

Theorem 20. Let L be any language recognized by a MM-QFA with bounded error. Then L is regular.

Proof. Let M = (Q,Σ, δ, q0, Qacc, Qrej) be a MM-QFA which recognizes L with probability of error

bounded by 1/2− ϵ. We will write w ≡L w
′ if ∀y ∈ Σ∗, we have wy ∈ L↔ w′y ∈ L. The relation L is an

equivalence relation, and partitions Σ∗ into finitely many equivalence classes if and only if L is regular.

Let W ⊆ Σ∗ be any set of strings which are pairwise equivalent with respect to ≡L. In order to prove

the proposition, if suffices to show that W must be finite. For w ̸= w′ (both in W ) there must exist a

string y ∈ Σ∗ such that wy ∈ L↔ w′y /∈ L. Hence, let v = Tκw(|q0⟩ , 0, 0) and v = Tκw′(|q0⟩ , 0, 0); since
M has error propability bounded away from 1

2 by ϵ, we have that ∥Ty$v− Ty$v′ > 2ϵ. Consequently, we

have ∥v − v′∥ > 2ϵ/c so that the set

{Tκw(|q0⟩ , 0, 0) | w ∈W} (6.1)

must be finite. Therefore, W must be finite as well.

The other way of the theorem is not true (regular → recognizable by a MM-QFA with bounded

error), in fact in [7] it is shown that
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q1 q2

x

x

y

Figure 6.1: The new forbidden structure

Theorem 21. The language L = {a, b}∗a cannot be recognized by MM-QFA with bounded error

From the two theorems above we can conlude that:

Theorem 22. The set of languages accepted from a MM-QFA with bounded error is a proper subclass

of regular languages

Proof. Let L be the set of languages accepted from a MM-QFA with buonded error. From theorem

20, we know that L ∈ L → L is regular, so for sure L is a subset of the regular languages. Moreover,

L̂ = {a, b}∗a /∈ L and L̂ is clearly regular; so L̂ is the witness of the difference between the set of regular

languages and L.

The first link we can create between MM-QFA and classic automata is:

Theorem 23. If a language L is accepted by a PRFA then it is accepted by a MM-QFA with the same

probability of acceptance.

6.2.3 Splitting languages recognized by MM-QFA

From the definitions we gave of RMO and UMO, it’s easy to derive a definition for their counterpart

for MM-QFA, RMM and UMM respectively.

Unlike the closure properties of the classes RMO and UMO, which can be derived easily, the closure

properties of the classes RMM and UMM are not as evident and in one important case are unknown:

in fact

Definition 6.2.1. It is still unknown if the class RMM, UMM are closed under boolean operations.

But for a fixed ϵ > 0 it’s true that:

Definition 6.2.2. The class RMMϵ is closed under complement

As we introduced in 25, in [5] a condition for a Language to be inside RMM is derived too. A

language L is said to satisfy the partial order condition if the minimal DFA for L satisfies the partial

order condition.

Definition 6.2.3. A DFA is said to satisfy the partial order condition if it does not contain two dis-

tinguishable states q1, q2 ∈ Q such that there exists two words x, y ∈ Σ+ where δ(q1, x) = δ(q2, x) = q2

and δ(q2, y) = q1. (Two states are said to be distinguishable if there exists a word z ∈ Σ+ such that

δ(q1, z) ∈ F and δ(q2, z) /∈ F ).

From this new forbidden structure, we can define a condition for a language to be inside RMM:
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q1 q2
x

x

Figure 6.2: The ’forbidden construction’ from the theorem 25.

Theorem 24. If the minimal DFA for a Language L does not satisfy the partial order condition, then

L /∈ RMM

(The condition is named partial order because once q2 is visited, there is no way back from it, so we

can introduce a partial order for the states of a DFA) The partial order condition was also proposed as

a method to prove the closure of RMM under intersection. Actually, as we will see in Theorem 35, the

class RMM results to be not closed under any binary boolean operation where the both arguments are

significant.

6.2.4 MM-QFA expressive power and minimal automaton

In [1] a lot has been done to study the relation between acceptance of MM-QFA and minimal automaton.

We will introduce some of them that will then lead us the definition of partial order condition.

Theorem 25. Let L be a language and M be its minimal automaton. Assume that there is a word x

such that M contains state q1, q2 satisfying:

• q1 ̸= q2

• If M starts in q1 and reads x, it passes to q2

• If M starts in q2 and reads x, it passes to q2

• q2 is neither an all-accepting nor an all-rejecting state.

Then L cannot be recognized by a MM-QFA with probability at least 7
9 + ϵ for any fixed ϵ > 0.

Something similar can also be achieved for RFA, in fact:

Theorem 26. Let L be a language and M the minimal automaton accepting it. If M does not contain

the forbidden structure introduced in 25, then L can be recognized by a RFA.

The last theorem, united with the one introduced in 25 leads to a new theorem about language

acceptance for MM-QFA:

Theorem 27. A language L can be recognized by a MM-QFA with probability 7
9 + ϵ if and only if it can

be recognized by a RFA

Of course, we just introduced results for acceptance probabilities that are pretty high (79 + ϵ), but

what about smaller ones? Always in [1], it shown that:

Theorem 28. The language a∗b∗ can be recognized by a MM-QFA with probability p = 0.68 where p is

the root of p3 + p = 1
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Proof. We will provide a description of a MM-QFA accepting this language. LetM = (Q,Σ, δ, ψ,Qacc, Qrej)

that automaton, defined as:

• Q = {q0, q1, qacc, qrej}

• Σ = {a, b}

• For δ function we will provide a more general definiton using operators Va, Vb

• The initial state ψ is defined as
√
1− p |q0⟩+

√
p |q1⟩

• Qacc = {qacc}

• Qrej = {qrej}

The Va and Vb operators are defined as:

• Va(|q0⟩) = (1− p) |q0⟩+
√︁
p(1− p) |q1⟩+

√
p |qrej⟩

• Va(|q1⟩) =
√︁
p(1− p) |q0⟩+ p |q1⟩ −

√
1− p |qrej⟩

• Vb(|q0⟩) = |qrej⟩

• Vb(|q1⟩) = |q1⟩

• V$(|q0⟩) = |qrej⟩

• V$(|q1⟩) = |qacc⟩

Notice that, for the first time we defined the V operator also for the symbol $ of the working alphabet

Γ, used to define how the Automata has to behave once that right end marker is read (In this case, it

can be read as ’if at the end of the word, the state is |q0⟩, then reject, if it is |q1⟩ accept)

Let’s prove that this automata actually accepts a∗b∗ with probability p. We can split the possible

input word in 3 classes:

1. if the input word x ∈ a∗. In that case, the Vb definition becomes useless and only the Va and V$

operators are applied. If we start from ψ, and we apply Va we get:

ψ =
√︁

1− pVa(|q0⟩) +
√
pVa(|q1⟩) with√︁

1− pVa(|q0⟩) =
√︁
1− p

(︂
(1− p) |q0⟩+

√︁
p(1− p) |q1⟩+

√
p |qrej⟩

)︂
√
pVa(|q1⟩) =

√
p
(︂√︁

p(1− p) |q0⟩+ p |q1⟩ −
√︁
1− p |qrej⟩

)︂
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If we look carefully to that equation we see that the terms with |q0⟩ can be rewrote like:

(1− p)
√︁

1− p |q0⟩+
√
p
√︁
p(1− p) |q0⟩ =

(1− p)
√︁
1− p |q0⟩+

√︁
p2(1− p) |q0⟩ =

(1− p)
√︁
1− p |q0⟩+ p

√︁
(1− p) |q0⟩ =√︁

1− p |q0⟩ (1− p+ p) =√︁
1− p |q0⟩

The same thing can be made for |q1⟩ (we will not show all the steps, it’s more like an exercise

about radicals) and we obtain that the terms with |q1⟩ actually sum up to
√
p |q1⟩.

Therefore ψ after applying Va(|q0⟩) and Vb(|q1⟩) is now:

ψ =
√︁

1− p |q0⟩+
√
p |q1⟩+ (

√︁
1− p√p−√p

√︁
1− p) |qrej⟩

The last term then cancels out due to its 0 coefficient (
√
1− p√p−√p

√
1− p), and then we have

eventually proved that the operator Va actually maps the initial state to itself. So, after reading

the whole word x ∈ a∗, our state would always be:
√
1− p |q0⟩ +

√
p |q1⟩. When the right end

marker is read after x, using V$, |q0⟩ becomes |qrej⟩ and |q1⟩ becomes |qacc⟩. The ending state being

measured is:
√
1− p |qrej⟩+

√
p |qacc⟩ and we will have an accepting state with probability p.

Note that in this case we took for granted that the observation step always results in the subspace

Enon during the computation because until we reach the right end marker, we do not have any

state either in the Eacc or in the Erej subspace.

2. If the input is of the type a∗b+. As we learned above, the operator Va just maps the initial state

to itself, and when we read the first b, the current state is actually the initial state ψ. Now let’s

apply the Vb operators as we did above for the Va:

ψ =
√︁
1− pVb(|q0⟩) +

√
pVb(|q1⟩) with√︁

1− pVb(|q0⟩) =
√︁
1− p |qrej⟩

√
pVb(|q1⟩) =

√
p |q1⟩

And, this case, after applying the Vb operator, we explicitly apply the Observable: in fact, we

have a 1 − p probability that the word is rejected before the whole word is read. If instead, the

observation goes in the Enon subspace, the new state of the machine would be
√
p |q1⟩. From here,

if we keep applying the Vb(|q1⟩) operator, we would just map the state to itself. So when we reach

the $, |q1⟩ is replaced with |qacc⟩ and we have a p acceptance probability.

3. if the input is not in the language a∗b∗. If the word is not inside this language, then its starting

segment has the form a∗b+a+. We know that, when we read the first b, we have a 1− p rejecting

probability. After that first b, the state is
√
p |q1⟩ for all the other bs. When we read the first a
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after those bs, the state
√
p |q1⟩ becomes

√
p
(︂√︁

p(1− p) |q0⟩+ p |q1⟩ −
√︁
1− p |qrej⟩

)︂
applying Va(|q1⟩). In this case, we have a p(1−p) rejecting probability; otherwise, the non-halting

state of the machines become |ψ⟩ = p
√
1− p |q0⟩+ p

√
p |q1⟩ (I actually found an error here in the

proof inside [1]). All the other times we apply the Va operator the state |ψ⟩ remains unchanged.

Eventually, we will find either a right end marker $ or a b and |q0⟩ is mapped to |qrej⟩: in this case,

we have a p2(1− p) rejecting probability. Summing up all the rejecting probabilities we found, we

get that the machine M rejects a word /∈ a∗b∗ with probability:

(1− p) + p(1− p) + p2(1− p) = (1− p)(1 + p+ p2) =
1− p3

1− p
(1− p) = 1− p3 = p

If we now look at the Minumal automata (RFA) that accepts a∗b∗, we see that it contains the

’forbidden structure’ we introduced before; we can then state that:

Theorem 29. There is a language that can be recognized from a MM-QFA with probability 0.68... but

not with probability 7
9 + ϵ

Using the theorem we just introduced and the theorem 27, we can introduce one other theorem:

Theorem 30. There is a language that can be recognized by a MM-QFA with probability 0.68... but not

by a RFA.

This last theorem can be improved showing that neither PRFA can accept that language; to do that

we will introduce, as we did for RFA, a forbidden structure for PRFA too.

Definition 6.2.4. Let L be a language and M the minimal automaton accepting it. Then if there exitsts

words x, y and states q1, q2 ∈ QM that satisfy the following:

• neither q1 nor q2 are all-accepting or all-rejecting states

• reading x in q1 leads to q1

• reading y in q1 leads to q2

• reading y in q2 leads to q2

• There is no i > 0 such that reading xi from q2 leads to q2

Then L cannot be recognized with probability 1/2 + ϵ (ϵ > 0) by a PRFA

It’s pretty straightforward to see that the minimal automaton accepting a∗b∗ contains this last

forbidden construction too, leading to:

Theorem 31. There is a language that can be recognized by a MM-QFA with probability 0.68... but not

by a PRFA with probability 1/2 + ϵ for any ϵ > 0.
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We then proved that MM-QFAs are actually more powerful than classic probabilistic automata.

In the 2001 other conditions (both sufficient and necessary) for the quantum languages where given

in [2]. First of all, it is shown that the condition we introduced in 25 and its relaxed version 24, can be

generalized to obtain a necessary condition for a language L to be recognized by a MM-QFA.

A Necessary condition

Theorem 32. Let L be a a language. Assume that there are words x, y, z1, z2 such that its minimal

automaton M contains states q1, q2, q3 satisfying:

• q2 ̸= q3

• if M starts in q1 and reads x, it passes to q2

• if M starts in the state q2 and reads x, it passes to q2

• if M starts in the state q1 and reads y, it passes to q3

• if M starts in the state q3 and reads y, it passes to q3

• for any word t ∈ (x|y)∗ there exists a word t1 ∈ (x|y)∗ such that if M starts in the state q2 and

reads tt1, it passes to q2

• for any word t ∈ (x|y)∗ there exists a word t1 ∈ (x|y)∗ such that if M starts in the state q3 and

reads tt1, it passes to q3

• if M starts in the state q2 and reads z1, it passes to an accepting state

• if M starts in the state q2 and reads z2, it passes to a rejecting state

• if M starts in the state q3 and reads z1, it passes to a rejecting state

• if M starts in the state q3 and reads z2, it passes to an accepting state

Then, L cannot be recognized by a MM-QFA

A necessary and sufficient condition

After this necessary condition, in [2] a necessary and sufficient condition is introduced.

Theorem 33. Let U be the class of languages whose minimal automaton does not contain ”two cycles

in a row”. A language that belongs to U can be recognized by a MM-QFA if and only if its minimal

deterministic automaton does not contain the ’forbidden construction’ drawed in 6.1 and the ’forbidden

construction’ from Theorem 32.
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q1 q2 q3
x

x

y

y

Figure 6.3: Two cycle in a row

q1 q2 q3

a

b

b
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a

Figure 6.4: Automaton recognizing L1

Not closure under union

From the Theorem 32 we can derive that the class of languages recognized by QFAs is not closed under

union. Let L1 be the language consisting of all words that start with any number of letters a and after

first letter b (if there is one) there is an odd number of letters a.

The minimal automaton recognizing L1 is shown in figure 6.4. That automaton satisfies the condition

introduced in Theorem 32, so L1 cannot be recognized by a QFA. But, we can also create two languages

L2 and L3 defined as follows. L2 consists of all words which start with an even number of letters a and

after first letter b (if there is one) there is an odd number of letters a. L3 consists of all words which

start with an odd number of letters a and after first letter b (if there is one) there is an odd number

of letters a. It’s pretty straightforward that L1 = L2 ∪ L3. If we create the minimal automaton that

accepts L2, and the one accepting L3 (their construction is pretty easy: just add a state q4 connected

to q1 used to see that the number of a is either even for L2 or odd for L3), we would see that neither

the first nor the second satisfy the condition in 32, so there actually exist two QFA accepting L2 and L3

respectively. But, as we showed above, there is no QFA accepting the union between L2 ∪ L3 (namely,

L1), so:

Theorem 34. The class of languages recognized by QFAs is not closed under union

We can also see that L2 and L3 are disjoint, thus L1 = L2∆L3 and we can conclude that the class

of languages accepted by QFA is not closed under symmetric difference. Being that class closed under

complementation, we can assume that:

Theorem 35. The class of languages recognizable by a QFA is not closed under any binary boolean

operation where both arguments are significant

More complex forbidden structures

If in the theorem 33 we allow the structure ’Two cicles in a row’, then the theorem 33 is not true

anymore. So, a new and more complex forbidden structure can be wrote:
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Theorem 36. Let L be a language and M be its minimal automaton. If M satisfies the following

conditions (where a, b, c, d, e, f, g, h, i ∈ Σ∗):

• If M reads x ∈ {a, b, c} in the state q0, its state changes to qx

• If M reads x ∈ {a, b, c} in the state qx, its state again becomes qx

• If M reads any string consisting of a, b and c in the state qx(x ∈ {a, b, c}), it moves to a state

from which it can return to the same qx by reading some (possibly, different) string consisting of

a, b and c

• If M reads y ∈ {d, e, f} in the state qx(x ∈ {a, b, c}), it moves to qxy

• If M reads y ∈ {d, e, f} in the state qxy, its state again becomes qxy

• If M reads any string consisting of d, e and f in the state qxy it moves to a state from which it can

return to the same state qxy by reading some (possibly, different) string consisting of d, e and f

• Reading h in the state qad, i in the state qbe and g in the state qcf lead to accepting states. Reading

g in qae, h in qbf and i in qcd lead to rejecting states

then L is not recognizable by a QFA.

If we look at the Automata strucuture implied by the last Theorem, it’s pretty like a tree: in fact, if

we look carefully the structure of the Theorem 36 it can actually be generalized to any number of levels

and any number of branchings at one level as long as every arc from one vertex to other is traversed the

same number of times in paths leading to accepting states and in paths leading to rejecting states.

• Level 1 of a construction consists of a state q1 and some words a11, a12, . . .

• Level 2 consists of the states q21, q22, . . . where the automaton goes if it reads one of words of

Level 1 in a state in Level 1. We require that, if the automaton starts in one of states of Level 2

and reads any string consisting of words of Level 1 it can return to the same state reading some

string consisting of these words. Level 2 also has some words a21, a22, . . .

• Level 3 consists of the states q31, q32, . . . where the automaton goes if it reads one of words of

Level 2 in a state in Level 2. We require that, if the automaton starts in one of states of Level 3

and reads any string consisting of words of Level 2 it can return to the same state reading some

string consisting of these words. Again, Level 3 also has some words a31, a32, . . . .

• . . .

• Level n consists of the states qn1, qn2, . . . where the automaton goes if it reads one of words of

Level n− 1 in a state in Level n− 1.

Let us denote all different words in this construction as a1, a2, a3, . . . , am. For a word ai and a level j

we construct sets of states Bij and Dij . A state q in level j + 1 belongs to Bij if the word ai belongs to

level j and M moves to q after reading ai in some state in level j. A state belongs to Dij if this state

belongs to the Level n and it is reachable from Bij .
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Then, a last theorem about QFA acceptance using the minimal automaton can be described using

the definition we just gave:

Theorem 37. Assume that the minimal automaton M of a language L contains the ’forbidden con-

struction’ of the general form described above and, in this construction, for each Dij the number of

accepting states is equal to the number of rejecting states. Then, L cannot be recognized by a QFA.

6.2.5 Space efficiency

Until now, the main focus was about the recognizing power of various QFA formalisms. But what about

their effiency? In [1], two theorems concerning this matter were introduced:

Theorem 38. Let L be a language recognized by a MM-QFA with n states. Then it can be recognized

by a 1 way deterministic automaton with 2O(n) states.

Moreover, an interesting result is introduced about primes. Let p be a prime number, consider the

language Lp = {ai| i ≡ 0(mod p)}; it’s easy to see that any deterministic automaton needs at least p

states to recognize Lp: QFA can do better, in fact

Theorem 39. For any ϵ > 0, there is a MM-QFA with O(log p) states that recognizes Lp with probability

1− ϵ

The same language can be analyzed for PRFAs too.

Theorem 40. Any PRFA recognizing Lp with probability 1
2 + ϵ, for a fixed ϵ > 0, has at least p states

From the last two theorems, we can derive a third one:

Theorem 41. For the language Lp, the number of states needed by a classical (RFA or PRFA) automata

is exponential in the number of states of a MM-QFA

The question that now arises is: are MM-QFA always more efficient in terms of space, with respect

to the classical automata? In [1], a theorem answers to this question:

Theorem 42. Let Lm = (xy|xy)m ∪ {(xy|zy)ixx | 0 ≤ i ≤ m− 1}. Then

1. Lm can be recognized by a 1-way deterministic automaton with 3m+ 2 states

2. Lm can be recognized by a 1-way reversible automaton but requires at least 3(2m − 1) states.





7
1-Way General QFA

In 2012 more questions about the power of MO-QFA and MM-QFA were made and in [8] two new

formalism were added to try answer those questions. The paper starts from the fact that the languages

recognized by MM-QFA with bounded error are more than those recognized by MO-QFA, but still a

proper subset of regular languages. From the study on MO-QFA and MM-QFA, two observation are

then made:

1. the number of times the measurement is performed in the computation affects the computational

power of 1 Way QFA (Either MO or Measure Many)

2. by considering just unitary transformations one limits the computational power of 1 Way QFA in

such a way that the two typical models of 1 Way QFA (MO-QFA and MM-QFA) are less powerful

than their classical counterparts.

Trying to overcome those problems, in [8] all the formalisms introduced does not use unitary operators

as evolution operators, but the most general operator allowed in quantum mechanics is used: trace-

preserving quantum operations.

7.1 MO-1gQFA

In [8] a MO-1gQFA is defined a 5-tupleM = (H,Σ, ρ0, {Eσ}σ∈Σ}, Pacc) where:

• H is a finite Hilbert Space (the space of the states)

• Σ is the working alphabet

• ρ0 is the initial state and it’s described as a Density operator on H

• Eσ (fixed a σ ∈ Σ) it a trace-preserving quantum operator acting on H

• Pacc is a projector on the subspace called accepting subspace of H

Denote Prej = I − Pacc and {Pacc, Prej} form a projective measurament on H.
On a generic word σ = σ1σ2 . . . σn(σi ∈ Σ ∀i ∈ 1, 2, . . . n) the automata M acts as follows: the

operators Eσi are permormed on the state ρ0 in succession. When the word σ has been completely read,



50 Chapter 7 — 1-Way General QFA

the projective measurament {Pacc, Prej} on the current state of the machine obtaining an accepting result

with some probability. So, as just described, the automatonM induces a function fM(σ) : Σ∗− > [0, 1]

defined as:

fM(σ) = Tr(PaccEσn ◦ · · · ◦ Eσ2 ◦ Eσ1ρ0)

From this definition, we can see that fM(σ) is actually the function describing the probability for some

word σ ∈ Σ∗ to be accepted fromM.

The first results we can give about this new formalism concern the function induced by MO-1gQFAs:

• If f is a function induced by an MO-1gQFA, then 1− f is also induced by an MO-1gQFA

• If f1, f2, . . . , fk are functions induced by MO-1gQFA, then
∑︁k

i=1 cifi is also induced by an MO-

1gQFA for any real constants ci > 0 such that
∑︁k

i=1 ci = 1

• If f1, f2, . . . , fk are functions induced by MO-1gQFA, then f1f2 . . . fk defined as f1f2(w) = f1(w)f2(w)

is also induced by an MO-1gQFA

About Language acceptance for MO-1gQFA, we have:

Definition 7.1.1. A language L is said to be recognized by a MO-1gQFA M with bounded error ϵ > 0

if for some λ ∈ (0, 1] it holds that fM(x) ≥ λ+ ϵ for all x ∈ L and that fM(x) ≤ λ− ϵ for all x /∈ L

So, if we resamble the reason why MO-1gQFA where introduced, it was beacuse it was assumed

that using unitary operator on classic MO-QFA could limit their accepting power; actually, even using

trace-preserving operator, the result obtained is that:

Theorem 43. The class of languages recognized with bounded error by MO-1gQFAs is exactly the class

of regular languages

Moreover, a relation with the PRFA can be introduced:

Theorem 44. For every regular language recognized by PFA, there exists a MO-1gQFA recognizing it

with certainty

Furthermore, it has been proved that:

Theorem 45. MO-1gQFA recognize all regular languages with certainty.

7.2 MM-1gQFA

The MM-1gQFA formalism introduced in [8] is pretty similar to the one used in 4.2 but, as for the MM-

1gQFA, the evolution operator does not have the limitation to be unitary but they can be any quantum

trace-preserving operator. So, a generic MM-1gQFA is defined asM = (H,Σ, ρ0, {Eσ}σ∈Σ},Hacc,Hrej)

where:

• H is a finite Hilbert Space (the space of the states)

• Σ, united with the symbols {κ, $} is the working alphabet
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• ρ0 is the initial state and it’s described as a Density operator on H

• Eσ (fixed a σ ∈ Σ) it a trace-preserving quantum operator acting on H

• Hacc is the accepting subspace of H

• Hrej is the rejecting subspace of H

Note that, together with a subspace Hnon, the spaces Hacc, Hrej span the full H, namely H = Hacc ⊕
Hrej ⊕ Hnon. Moreover, there is a measurament {Pacc, Prej, Pnon} where the general element Pi is the

projector on the subspace Hi (i ∈ {acc, rej, non}).
The input string of a generic MM-1gQFA M has the form κx$ (the symbols κ, $ are the left and

right endmarker respectively). Then, the behaviour of the machine is pretty the same as the one we

introduced in subsection 4.2:

1. If we assume the read symbol is σ, then Eσ is applied to the current state ρ, obtaining ρ′ = Eσ(ρ)

2. Then, the measurament {Pacc, Prej, Pnon} is performed on ρ′. If an accepting / rejecting result is

observed, then M halts return the observed result; otherwise, with a probability Tr(Pnonρ
′) the

machine reads the next symbol.

The generic state of a MM-1gQFAM can be described as an element inside the set V = H×R×R.
Given an element (ρ, pacc, prej) ∈ V, the machine M has an accepting probability pacc, a rejecting

probability prej and neither with probability Tr(ρ). So, the evolution ofM as described above can be

formalized as an operator Tσ : V → V (after reading a symbol σ ∈ Σ ∪ {κ, $}), defined as:

Tσ : (ρ, pacc, prej)→ (PnonEσ(ρ)Pnon,Tr(PaccEσ(ρ)) + pacc,Tr(PrejEσ(ρ)) + prej)

If we use as for MO-1gQFA the function FM(x) to describe the accepting probability for a word x, then

it accumulates all the accepting probabilities produced on reading each symbol in the input string κx$.

It is known that MM-QFA can recognize more languages with bounded error than MO-QFA. From

this fact, we tend to believe that the number of times of the measurement performed in the computation

affects the computational power of QFA. Encouraged by this belief, the MM-1gQFA was defined, a

measure-many version of MO-QFA, with hope to enhance the computational power of 1gQFA. However,

the result obtained is that:

Theorem 46. The set of Languages recognized by MM-1gQFA with bounded error is exactly the class

of regular languages





8
Other models: Latvian and with control

language MM-QFA

We will give here the definition of two more formalisms for MM-QFA: the Latvian and the one with

control language

8.1 Latvian QFA

It works similarly as MO-QFA except that the transition function δ, is a combination of projective

measurement and unitary matrix. This alteration increases the power of LQFA (Latvian QFA) for

acceptance of languages.

Definition 8.1.1. A LQFA M is defined as a 6-tuple

(Q,Σ, {Aσ}σ∈Σ, {Pσ}σ∈Σ, q0, Qacc, Qacc) where:

• Q is the set of states

• Σ is the alphabet. As usual, we can define the working alphabet Γ = Σ ∪ {#, $}.

• Aσ is the unitary transformation associated to each symbol and Pσ is a set of ortoghonal subspaces

• q0 is the initial state

• Qacc is the set of accepting states. We can then define Eacc = span{|q⟩ |q ∈ Qacc}

• Qrej is the set of rejecting states. We can then define Erej = span{|q⟩ |q ∈ Qrej}

The computing process of a LQFA on a word σ = #σ1σ2 . . . σn$, starts in the state q0 and for each

σi ∈ Σ the unitary matrix Aσi and the projective measurament Pσi are performed. When the right end

marker is found, $, the projective measurement P$ gives the result that states if the word σ is accepted

or rejected.

It has been proved that LQFA accepts, with bounded error, a proper subset of regular languages.
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8.2 QFA with control language

Definition 8.2.1. A CL-1QFA M is defined as a 6-tuple

M = (Q,Σ, π, {U(σ)}σ∈Σ, O, L) where:

• Q is the finite set of states

• Σ is the alphabet, to which we will add also a right-end marker $

• π ∈ C1×n is the set of initial amplitude satisfying ∥π∥2 = 1. If π = (π1, π2, . . . , πn) and q =

(q1, q2, . . . , qn) then πq
T (where T stands for the transpose) we will get the initial state

|ψ0⟩ =
n∑︂

i=1

πi |qi⟩

• U(σ) ∈ Cn×n, σ ∈ (Σ ∪ $) is the unitary matrix associated to the symbol σ

• O is an observable with set of possible results C = {c1, c2, . . . , cs} and with the projector set

{P (ci)| i = 1, 2, . . . , n} where P (ci) represents the projector onto the eigenspace corresponding to

ci

• L ⊆ C∗ is a regular language called Control language

The computation of input σ = σ1σ2 . . . σn$ starts with the state |ψ0⟩ we defined above and for each

σi that is read the operations made are:

1. U(σi) is applied with the new state |ψ′⟩ = U(σi) |ψ⟩

2. The observable O is measured on |ψ′⟩ and according to the principles of QM this leads to a result

ck ∈ C with a probability pk = ∥P (ck) |ψ′⟩ ∥2 and the states of the machine then collpases to

P (ck) |ψ′⟩ /√pk.

Thus, the computation on the word σ = σ1σ2 . . . σn$ leads to a sequence y = y1y2 . . . yn+1 ∈ C∗ with

a probability p(y|σ) computed as:

p(y|σ) =

⃦⃦⃦⃦
⃦
n+1∏︂
i=1

(P (ci)U(σi)) |ψ0⟩

⃦⃦⃦⃦
⃦
2

where we define σn+1 = $ and hypotizing that the product
∏︁n

i=1Ai = AnAn−1 . . . A1 (remember the

matrix rules on product) then the accepted language is defined as:

PM (σ) =
∑︂

y1y2...yn+1∈C∗

p(y1y2 . . . yn+1|σ)

Further works on this model showed that the class of languages accepted by CL-1QFA with bounded

error is closed under Boolean operations. Moreover, the relation between RMO, RMM as defined

above and let RQC be the class of languages accepted by CL-1QFA with bounded error is:

RMO ⊂ RMM ⊂ RQC



9
Overcoming the head movement limit

In this chapter we will introduce some formalisms that will be useful to define a conclusive language

hierarchy; in this two last models, as for Turing machines, we are allowed to move right, stay put and

eventually move left on the input tape after each symbol is read. This obviously increases the acceptance

power of 1.5-Way QFA and 2-Way QFA.

9.1 1.5-Way QFA

In a 1.5-Way QFA R/W head is allowed to remain stationary or move towards the right direction

of the input tape, but it cannot move towards the left of input tape. So, a generic 1.5-Way QFA

M = (Q,Σ, q0, δ, Qacc, Qrej) where:

• Q is the finite set of states

• Σ is the input alphabet, united with the left and right endmarker {κ, $}

• q0 is the initial state

• δ is the transition function defined as δ : Q×(Σ∪{κ, $})×Q×{0, 1} → C, where the last argument

is used to defined the moviment of the reading head. (0 stands for a stay movement, while 1 is for

right movement)

• Qacc is the set of accepting states

• Qrej is the set of rejecting states

9.2 2-Way QFA

As mentioned above, the 2-Way QFA formalism was introduced in [7]; from the name, it’s easy to see

that it allows the reading head to move both left and right on the input tape and eventually even act

’stationary’ (no movement on the tape). A 2-Way QFA M is defined as (Q,Σ, δ, q0, Qacc, Qrej) where:

• Q is the finite set of states. Moreover, it must be true that Q = Qacc ∪Qrej ∪Qnon, where Qnon is

the the set of non-halting state (Qnon = Q \ (Qacc ∪Qrej))
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• Σ is the input alphabet, united with the left and right endmarker {κ, $} (we will refer to this

enhanced alphabet with Γ)

• q0 is the initial state

• δ is the transition function defined as δ : Q × (Σ ∪ {κ, $}) × Q × {←, ↑,→} → C, where the last

argument is used to defined the moviment of the reading head.

• Qacc is the set of accepting states

• Qrej is the set of rejecting states

Unlike the usual definition of 2-way automata, we will assume that the tape of any 2QFA in circular in

the sense that if the machine is scannin the last tape square and subsequently moves its tape head right

(or, in the same way, it is scanning the first tape square and moves left), the tape head will then be

scanning the first tape square (last tape square, respectively). The content of any tape can be described

by a mapping x : Zn → Γ, with n being the the number of distinct tape squares in the tape; such a

mapping will itself be referred to as a tape. The number of configurations of a 2QFA M on any tape x

of length n is n|Q|, since there are n possible locations for the tape head and |Q| internal states; we will
denote the set of configuration for a fixed M with Cn, and identify Q× Zn in the obvious way.

A superposition of M on a tape x of length n is any norm 1 element of the finite Hilbert Space

Hn = l2(Cn) (the space of mappings from Cn to C with the usual inner product). For each c ∈ Cn, |c⟩
denotes the unit vector which takes value 1 at c and 0 elsewhere: all the other elements inside Hn can

be expressed with the usual superposition
∑︁

c∈Cn
αc |c⟩.

After this definitions, we can now introduce the transition function δ : Q× Γ×Q× {−1, 0, 1} → C,
which has to be interpreted as the function that taken as inputs two states q, q′ ∈ Q, a symbol σ ∈ Γ and

a direction d ∈ {−1, 0, 1} (1 is a movement in right direction of the tape head, -1 for a left one and 0 is

the stay direction) (written as δ(q, σ, q′, d)), returns the probability amplitude with which a machine in

state q, reading in input symbol σ will change its state to q′ and move the tape head in direction d. For

any tape x, the transition function induces an operator Ux
δ (the evolution operator) on H|x| as follows:

Ux
δ |q, k⟩ =

∑︂
q′,d

δ(q, x(k), q′, d)
⃓⃓
q′, k + d(mod|x|)

⟩︁
for each element c = (q, k) ∈ C|x|. The operator U

x
δ is extended to all H|x| by linearity, so we are allowed

to define (Ux
δ )

t |ψ⟩ as the superposition obtained if a machine M on tape x, starting from superposition

|ψ⟩ was left to run for t steps (without observing, otherwise the superposition would collapse).

Notice that the computation in 2−WayQFA is very similar to the one made in MM-QFA, since after

every step the state is observed using the observable O, which is defined as the observable corresponding

to the decomposition Hn into Eacc ⊕ Erej ⊕ Enon, where the three subspaces are defined as:

Eacc = span{|c⟩ | c ∈ (Qacc × Zn)}

Erej = span{|c⟩ | c ∈ (Qrej × Zn)}

Enon = span{|c⟩ | c ∈ (Qnon × Zn)}
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which clearly recalls the definition given for MM-QFA, we just have to add the component for Zn.

9.2.1 Well-formed 2-Way QFA

In order for a superposition to be valid, it must be, as we already know, of unit form. A 2-Way QFA

which guarantees that any valid superposition will evolve into another valid superposition is said to be

well-formed. This requirement can be seen as the request for all the Ux
δ to be unitary ; we will now prove

a Proposition which describes the properties an evolution operator must have in order to be unitary

(and, consequentially, the 2-Way QFA will be well-formed).

Theorem 47. A 2-Way QFAM = (Q,Σ, δ, q0, Qacc, Qrej) is well-formed iff for every choice of q1, q2 ∈ Q
and σ, σ1, σ2 ∈ Γ, the 3 following holds:

∑︂
q′,d

δ(q1, σ, q′, d)δ(q2, σ, q
′, d) =

⎧⎨⎩1 if q1 = q2

0 if q1 ̸= q2

∑︂
q′

(︂
δ(q1, σ1, q′, 1)δ(q2, σ2, q

′, 0) + δ(q1, σ1, q′, 0)δ(q2, σ2, q
′,−1)

)︂
= 0

∑︂
q′

(︂
δ(q1, σ1, q′, 1)δ(q2, σ2, q

′,−1)
)︂
= 0

Proof. For each x, Ux
δ is unitary if and only if the vectors Ux

δ |q, k⟩ for q ∈ Q, z ∈ Z|v| are ortonormal.

The first condition is a ’Kronecker product’, it requires that ∥Ux
δ |q, k⟩ ∥ = 1, ∀q, k, while if q1 ̸= q2,

then Ux
δ |q1, k⟩ ⊥ Ux

δ |q2, k⟩. The second condition is equivalent to the requirement that Ux
δ |q1, k⟩ ⊥

Ux
δ |q2, k + 1⟩, while the third one ensures that Ux

δ |q1, k⟩ ⊥ Ux
δ |q2, k + 2⟩, for each tape x, states q1, q2

and position k. Thus, the vectors Ux
δ |q, k⟩, with q ∈ Q and k ∈ Z|x| are orthonormal for every x only if

all three conditions are satisfied.

The above theorem provides an easy way to check if a 2-Way QFA is well-formed or not. However,

there exists an easier method to specify the transition function: the method is to decompose the transi-

tion function δ into two parts: one for transforming the state and the other which takes care of moving

the tape head. Given a 2-Way QFAM with set of states Q, consider the Hilbert space l2(Q) and suppose

to have a linear operator Vσ : l2(Q)→ l2(Q) defined for each σ ∈ Γ and a function D : Q→ {−1, 0, 1}.
Using these two functions we can define the transition function δ as:

δ(q, σ, q′, d) =

⎧⎨⎩⟨q′|Vσ |q⟩ D(q′) = d

0 D(q′) ̸= d
(9.1)

Where ⟨q′|Vσ |q⟩ is the coefficient of |q′⟩ in the superposition generated by Vσ(|q⟩): M is well-formed

when every Vσ is unitary.
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9.2.2 Language Recognized by a 2-Way QFA

We can now discuss the concept of language accepted by a 2-Way QFA. Given an inpu string w ∈ Σ∗

we define the corresponding tape xw as follows:

xw(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ if i = 0

$ if i = |w|+ 1

wi if 1 ≤ i ≤ w

Of course xw is not defined for i > |w|+ 1. Let M be a 2-Way QFA, we will say that M runs on input

w if:

1. the tape of M is defined by xw

2. The computation begins with M in the state |q0, 0⟩

3. after each computation step (after each application of Ux
δ ), the reached superpostion is observed

used the observable O. As for MM-QFA the computation continues until the result of an obser-

vation is either accept or reject, at which time the computation halts.

After this definitions, we can treate the computation of a 2-Way QFA as a for a probabilistic machine: if

input w results in accept with probability greater than 1
2 , then w is an element of the language recognized

by M , otherwise not.

9.2.3 A pratical example

To clarify a bit the notation which may look a bit messy, we will now provide an example of 2-Way QFA

which recognizes the language a∗b∗. Let M be a 2-Way QFA defined as follows:

• Q = {q0, q1, q2, q3, q4}

• Σ = {a, b}

• Qacc = {q3}

• Qrej = {q4}

We will define the δ function using the method described in 9.1. Since no superposition are needed in

this simple automaton, we will provide a table where we will put in the rows the current state qi, in the

columns the input symbol σ and then in the table cell the new state qj such that Vσ(qi) = qj .

κ a b $

q0 q0 q0 q1 q1

q1 q2 q2 q0 q0

q2 q4 q4 q2 q3

q3 q3 q3 q3 q2

q4 q1 q1 q4 q4
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The function D is then defined as

D(q0) = D(q2) = +1

D(q3) = D(q4) = 0

D(q1) = −1

Consider w = aba as input string, then the tape x is defined as: x(0) = κ, x(1) = a, x(2) = b, x(3) =

a, x(4) = $. Then the sequence of steps done by M is:

1. The initial state is |q0, 0⟩. M reads the input symbol x(0) = κ and the new state becomes

Vκ |q0⟩ = |q0⟩; We compute D on the new state, and we get +1. Then the new state is |q0, 1⟩.

2. The input symbol is now a. Va |q0⟩ is equal to |q0⟩ and D(q0) is again +1. So we move to state

|q0, 2⟩.

3. We now read the symbol b; in this case, by definition of V , Vb |q0⟩ is equal to |q1⟩ and since

D(|q1⟩) = −1, the new state is |q1, 1⟩

4. Since we ’got back’ to symbol in position one of the tape due to the definition of D, the machine

reads again the input x(1) = a. The new state then becomes Va |q1⟩ = |q2⟩ while the movement of

the tape head is D(|q2⟩) = +1; so the current state becomes |q2, 2⟩

5. M then reads again x(2) = b while being in state |q2, 2⟩: it then moves to state |Vb |q2⟩ , D(Vb |q2⟩)⟩ =
|q2, 3⟩

6. The current input then becomes x(3) = a, which causes the machine to move into the state |q4, 4⟩

After this last step, the machine M halts with certainty with a reject result: in fact, after each symbol

is read, we are also supposed to apply the observable O to the state of the machine; but, from step 1

to step 4, we were always in states that if measured, would yield to a non-halting state with certainty

(so the state is not modified by the application of O). But in step 5, we reach a state |q4, 4⟩, which is

observed using O and leads to rejection with certainty.

We can use this example to introdce a key concept about the description of V : many of the values of

V define transitions which are never encountered in a computation for any string w. These values have

been defined in such a way that Vσ is unitary; in general, we are intrested in specify only the values

that matter and as long as the vectors are orhonormal, the remaining values can always be assigned in

arbitrary fashion so that the resulting V is unitary.

9.2.4 2-Way QFA for {ambm | m ≥ 1}

We will now build a 2-Way QFA that recognizes the non-regular language L = {aibi | m ≥ 1} in linear

time. For each N ∈ N+, define the machine MN = (Q,Σ, δ, q0, Qacc, Qrej) where:

• Σ = {a, b}
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•

Q = {q0, q1, q2, q3}

∪ {rj,k | 1 ≤ j ≤ N, 0 ≤ k ≤ max(j,N − j + 1)}

∪ {sj | 1 ≤ j ≤ N}

• Qacc = {sN}

• Qrej = {q3} ∪ {sj | 1 ≤ j < N}

The delta function is described using the easier method we introduced above (so giving the definition

of V and D); we first introduce V :

Vκ |q0⟩ = |q0⟩
Vκ |q1⟩ = |q3⟩
Vκ |rj,0⟩ = 1√

N

∑︁N
l=1 exp

(︁
2πi
N jl

)︁
|sl⟩, 1 ≤ j ≤ N

Va |q0⟩ = |q0⟩
Va |q1⟩ = |q2⟩
Va |q2⟩ = |q3⟩
Va |rj,0⟩ = |rj,j⟩ , 1 ≤ j ≤ N
Va |rj,k⟩ = |rj,k−1⟩ , 1 ≤ k ≤ j, 1 ≤ j ≤ N

V$ |q0⟩ = |q3⟩
V$ |q2⟩ = 1√

N

∑︁N
j=i |rj,0⟩

Vb |q0⟩ = |q1⟩
Vb |q2⟩ = |q2⟩
Vb |rj,0⟩ = |rj,N−j+1⟩ , 1 ≤ j ≤ N
Vb |rj,k⟩ = |rj,k−1⟩ , 1 ≤ k ≤ N − j + 1, 1 ≤ j ≤ N

and then the definition of D:

D(q0) = 1

D(q1) = −1
D(q2) = +1

D(q3) = 0

D(rj,0) = −1, 1 ≤ j ≤ N
D(rj,k) = 0, 1 ≤ j ≤ N, k ̸= 0

D(sj) = 0, 1 ≤ j ≤ N

Theorem 48. Let w ∈ {a, b}∗. For every N ∈ N+, if w ∈ {ambm |m ≥ 1} then MN accepts w with

probability 1 and otherwise MN rejects w with probability at least 1 - 1
N . In both cases the machine MN

halts after O(N |w|) steps.

Proof. The computation of each MN consists of two phases. The first phase rejects any input not of

the form aubv for u, v ≥ 1, and the second phase rejects, with some probability, those inputs for which

u ̸= v.

The first phase is really similar to the computation we showed in the previous example: for each

word that is not of the form aubv, the computation will eventually enter a state were the machine M

rejects with probability 1 and it stops.

Otherwise the second phase begins with the machine in state q2 with the tape reading the right end

marker $. At the start of the second phase, the computation branches into N paths, indicated by the

states r1,0, r2,0, · · · rN,0 each with amplitude 1√
N

and the tape head moves 1 square to the left for each

state in the superposition (this because the symbol read is $, the state is q2, so we apply V$(|q2⟩); for
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what concerns the tape head movement, we move to the left since D(rj,0) = −1, for all the js, so all the

states of the superposition are effected). For each of these paths, the tape head moves deterministically

to the left end-marker in the following way; in the j-th path

• if the tape head reads the symbol a, it remains stationary for j steps (always reading the same

a) and then moves left. This happens because when the a is first read, Va maps the current state

|rj,0⟩ to |rj,j⟩ and the function D for rj,j is defined as 0 (j, j is a special case of j, k in the definition

of D). From that point on, the machine MN keeps on reading the same a and it keeps applying

the rule of Va that maps |rj,k⟩ to |rj,k−1⟩ (and keeping being stationary on the same a because of

D) until we reach the state |rj,1⟩. When the a is read for the jth time, we reach the state |rj,0⟩
and using D(rj,0) we move the tape head one char to the left. And this goes on for all the as

• if the tape head reads the symbol b, it remains stationary for N − j − 1 steps and then it moves

left. The explanation for this behavior is the same as the a case, just notice that Vb maps |rj,0⟩ to
|rj,N−j−1⟩ and then proceed as above.

Thus, on input aubv, the tape head requires precisely (j + 1)u + (N − j + 2)v + 1 steps to move from

the right end marker $ to the left one κ; notice that when the left end marker is reached, each j-th path

is in the state |rj,0⟩ (Because while getting from right to left, we always reach only rj,k states, and the

only one allowing us a left movement is rj,0). Moreover, since all js in the superposition created from

V$ (applied to |q2⟩ at the beginning) are different, we have that

(j1 + 1)u+ (N − j1 + 2)v + 1 = (j2 + 1)u+ (N − j2 + 2)v + 1, j1, j2 ∈ {1, 2, · · ·N}, j1 ̸= j2

holds iff u = v. Namely, any two different (so with two different js) computational paths started from

V$(|q2⟩) will reach the left end marker at the same time iff u = v (so the input is of the form ambm with

m = u = v). Consider now what happens when all the N computational paths reaches the left end

marker: the operator Vκ(|rj,0⟩) needs to be applied; we split in two cases:

1. in the first one, the input is of the form ambm: from what we stated above, we know that in this

case all the N paths reaches the left end marker at the same time. So here we have the state that

we will call, for sake of readability, |ψ⟩:

1√
N

N∑︂
j=1

|rj,0⟩

and if we apply to it the operator Vκ (which is actually a QFT) we get:

Vκ |ψ⟩ =
1√
N

N∑︂
j=1

Vκ |rj,0⟩

=
1

N

N∑︂
j=1

N∑︂
l=1

exp

(︃
2πi

N
jl

)︃
|sl⟩ = |sN ⟩

in which the observable O leads to acceptance with probability 1.
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Figure 9.1: Inclusion Hierarchy

2. suppose now that the input is not of the form ambm: then each of then N computation paths

reaches the κ symbol at a differente time, and so there is no cancellation between the rejecting states

introduced in the superposition by Vκ. For each of the N possible path lengths, the conditional

probability that an observation results in accept at the the time corresponding to that path length

is 1
N (the case that from the Fourier Transormation introduced by Vκ, if measured, gives as outcome

the state |sN ⟩). It follows that the total probability that an observation results in accept is also
1
N , and consequently the input is rejected with prob 1 - 1

N .

Each computation path has length that can be bounded by O(N |w|) (in the equation for the number

of steps to get from the right to the left endmarker, just notice that both j + 1 and N − j + 2 can be

over estimated as O(N), then we get O(N)u + O(N)v = O(N)(u + v) = O(N |w|) since w = aubv), so

MN must halt after O(N |w|) steps.

9.3 A final recap

In the image 9.1 we introduce a language acceptance hierarchy: notice that a one-directional line shows

containment relation and bidirectional lines show equivalence relation
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Heisenberg-inspired Quantum Automata

We will now introduce a new family of automata, which will resul in an original contribution of this

thesis.

Without going to deeply on physics matter, the most widely used mathematical description of

Quantum Mechanics is also known as Schrödinger picture: in this version, the state vectors are time-

dependent while the operators remain unmuted; the evolution in time of the system is then described

using the Schrödinger equation. But, for QM there exists another picture known as Heisenberg picture

in which the state vectors are time-indipendent and always remain fixed to their value at time 0, while

the time-dependency is moved to the operators.

In terms of Quantum Finite State automata all the models use the first picture, where the initial state

evolves through time using some unitary, but these unitaries never changes. Some work has been done

for Quantum Cellular Automata, the quantum counterpart of Cellular Automata introduced by Von

Neumann, where the equivalence between Schrödinger picture - based model and Heisenberg picture -

based model has been proved in [?].

To exploit the Heisenberg picture, we formalize a new model for QFA, named Quantum Heisenberg

Picture Finite State Automata (QHFA) defined as follow;

Definition 10.0.1 (Quantum Heisenberg Picture Finite State Automata). A QHFA M is 6-tuple M =

(Q,Σ, ψ, {Uσ}σ∈Σ, {Eσ,σ′}σ,σ′∈Σ, P ) where:

• Q is a finite set of states, with |Q| = m

• Σ is the input alphabet

• ψ is the initial state of the Automata

• {Uσ}σ∈Σ is a set of unitaries (Uσ ∈ Cm×m), namely one for each σ ∈ Σ, which describes the initial

amplitudes for the edges labelled with σ (using a graphic point of view).

• {Eσ′
σ }σ,σ′∈Σ is a set of |Σ|2 unitaries. Let α, β ∈ Σ, then Eβ

α ∈ Cm×m is the unitary describing

how the current unitary for α has to change when the input symbol is β.

• P is a projection matrix.
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10.1 Computation in QHFA

Let M be a QHFA as just defined and x = x1x2 · · ·xn be an input string for the automata. Then, given

σ ∈ Σ we define:

U ϵ
σ = Uσ

Ux1
σ = Ex1

σ U ϵ
σ

U
xixi−1···x1
σ = Exi

σ U
xi−1xi−2···x1
σ ∀i ≥ 2

A generic matrix Uy
σ , with y ∈ Σ∗ can be interpreted as the evolution of σ updated knowing that up to

now the string y has been read. The idea is that at each step of computation we reshape the probability

amplitudes in Uσ according to the input read, as if the automata responds to the input and adapts itself

to it to get an higher accepting probability.

Let xi(i ≥ 2) (the other cases are trivial) be the current input char, the operation we perform is:

U
xixi−1···x1
σ = Exi

σ U
xi−1xi−2···x1
σ , ∀σ ∈ Σ

Then, when the last char xn is read, the accepting probability is defined as:

∥P Ûx |ψ⟩ ∥2

For what concerns the definition of Ux we will provide three possible definitions and study the different

expressive power the model gets whenever one of the three is used.

The three definitions are:

Ûx = Uxnxn−1xn−2···x1
xn

(10.1)

Ûx = Uxnxn−1xn−2···x1
xn

Uxn−1xn−2xn−3···x1
xn−1

· · ·Uxixi−1xi−2···x1
xi · · ·Ux2x1

x2
Ux1
x1

(10.2)

Ûx = Uxnxn−1xn−2···x1
xn

Uxnxn−1xn−2···x1
xn−1

· · ·Uxnxn−1xn−2···x1
xi

· · ·Uxnxn−1xn−2···x1
x2

Uxnxn−1xn−2···x1
x1

(10.3)

The acceptance criterion we will use is the one we defined as with cut-point.

10.2 Expressive power

We will now further analyze how the expressive power of QHFAs change accordingly to the definition

of Ûx we use.

10.2.1 First case

The first definition for Ûx namely:

Ûx = Uxnxn−1xn−2···x1
xn

seems to be the most promising.

Theorem 49. Any MO-QFA M can be simulated by a QHFAM
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Proof. Let M = (Q,Σ, δ, q0, F ) be a MO-QFA (together with a projector P ) and x = x1x2 · · ·xn an

input string. We will denote with Uσ the unitary description of δ. The computation for x inM produces

a state that is:

Ux |q0⟩ = UxnUxn−1 · · ·Ux1 |q0⟩

We now defineM = (Q,Σ, ψ, {Uα}α∈Σ, {Eβ
α}α,β∈Σ, P ) as follows:

• Q, Σ and P are the same as M

• ψ = q0

• Uα = Im ∀α ∈ Σ. (as before, m = |Q|)

• Eβ
α = Uβ ∀α, β ∈ Σ.

Suppose x ∈ Σ∗ is given as input toM: by definition of QHFA, the computation yields to a matrix

Ûx that is then applied to the initial state |ψ⟩

Ûx |ψ⟩ = Uxnxn−1xn−2···x1
xn

|ψ⟩

Using the definition we can rewrite the last equation as:

Ûx |ψ⟩ = Exn
xn
Exn−1

xn
Exn−2

xn
· · ·Ex2

xn
Ex2

xn
Ex1

xn
U ϵ
xn
|ψ⟩

which yields by definition to:

Ûx |ψ⟩ = Exn
xn
Exn−1

xn
Exn−2

xn
· · ·Ex2

xn
Ex2

xn
Ex1

xn
U ϵ
xn
|ψ⟩

= UxnUxn−1Uxn−2 · · ·Ux2Ux1Im |ψ⟩

= UxnUxn−1Uxn−2 · · ·Ux2Ux1 |q0⟩

that is exactly the equation of ’acceptance’ for M .

To prove that with this definition the expressive power of QHFAs is bigger than MO-QFA we will

use as a witness the language:

L = {a, b}∗a

Firstly we will prove that this language cannot be accepted by a MO-QFA with any cutpoint.

Theorem 50. Any MO-QFA cannot accept the language L = {a, b}∗a with cut-point.

Proof. Let’s suppose the theorem is false. Then there exists an MO-QFAM that accepts L. Then using

theorem 17 it must hold that for each x ∈ Σ∗ and for every w ∈ L there exists a positive integer v such

that wxv ∈ L. But this is an absurd since for example taking x = b and w = a, then wxv = abv and

therefore it will never be in L.

Theorem 51. There exists a QHFAM that accepts L = {a, b}∗a with certainty.
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Proof. LetM be a QHFA defined as follows:

• Q = {q0, q1}, Σ = {a, b} and P = |q1⟩ ⟨q1|

• psi = q0

• Ua = X, Ub = I2 (where X is the matrix for the X gate).

• Eσ′
σ = I2 ∀σ, σ′inΣ

where it must hold that |q1⟩ = X |q0⟩. It is easy to see that for any x = x1x2x3 · · ·xn used as input, the

matrix Ûx will be

Ûx = Exn
xn
Exn−1

xn
Exn−2

xn
· · ·Ex2

xn
Ex2

xn
Ex1

xn
U ϵ
xn

= U ϵ
xn

= Uxn

So, since Σ = {a, b} then xn can be either a or b. Therefore, in the case xn = a the computation yields

to:

∥PÛx |ψ⟩ ∥2 = ∥PUa |ψ⟩ ∥2 = ∥PX |q0⟩ ∥2 = ∥ |q1⟩ ⟨q1|q1⟩ ∥2 = 1

Otherwise, in the case xn = b the computation yields to:

∥PÛx |ψ⟩ ∥2 = ∥PUb |ψ⟩ ∥2 = ∥PI2 |q0⟩ ∥2 = ∥ |q0⟩ ∥2 = 0

So this automaton not only recognizes with cut-point, but with certainty.

From this theorem we can then conclude that the class of languages accepted by QHFA with the

first definition of Ûx is a proper superset of the class UMO.

The current relation between UMO, RMO, and regular languages is shown below.

UMO REGRMO

The question that arises from the result we just got about QHFA is if the set of languages they recognize

contains all the regular languages or not. In the first case then QHFAs would create a sort of a ’box’

around the above diagram. In the second case QHFAs would accept a set of languages that is clearly

bigger than UMO but that does not contain all regular languages.

10.2.2 Second case

We will now try to do the same thing we just did for the first defition of Ûx with the second one, namely:

Ûx = Uxnxn−1xn−2···x1
xn

Uxn−1xn−2xn−3···x1
xn−1

· · ·Uxixi−1xi−2···x1
xi · · ·Ux2x1

x2
Ux1
x1
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Theorem 52. Any MO-QFA M can be simulated by a QHFAM

Proof. Let M = (Q,Σ, δ, q0, F ) be a MO-QFA (together with a projector P ) and x = x1x2 · · ·xn an

input string. We will denote with Uσ the unitary description of δ. The computation for x inM produces

a state that is:

Ux |q0⟩ = UxnUxn−1 · · ·Ux1 |q0⟩

We now defineM = (Q,Σ, ψ, {Uα}α∈Σ, {Eβ
α}α,β∈Σ, P ) as follows:

• Q, Σ and P are the same as M

• ψ = q0

• Uα = Uα ∀α ∈ Σ.

• Eβ
α = Im ∀α, β ∈ Σ. (as before, m = |Q|)

Suppose x is given as input to M: by definition of QHFA, the computation yields to a matrix Ûx

that is then applied to the initial state |ψ⟩

Ûx |ψ⟩ = Uxnxn−1xn−2···x1
xn

Uxn−1xn−2xn−3···x1
xn−1

· · ·Uxixi−1xi−2···x1
xi · · ·Ux2x1

x2
Ux1
x1
|ψ⟩

and, expanding all the terms, this is equal to:

Exn
xn
Exn−1

xn
· · ·Ex1

xn
U ϵ
xn
Exn−1

xn−1
Exn−2

xn−1
· · ·Ex1

xn−1
U ϵ
xn−1

· · ·Ex2
x2
Ex1

x2
U ϵ
x2
Ex1

x1
U ϵ
x1
|ψ⟩

Moreover applying QHFA’s defition and the definition ofM, we know that U ϵ
σ = Uσ = Uσ. Thereferore

we can rewrite the above equation as:

I I · · · I⏞ ⏟⏟ ⏞
n times

Uxn I I · · · I⏞ ⏟⏟ ⏞
n−1 times

Uxn−1 · · · I⏞⏟⏟⏞
2 times

Ux2 IUx1 |q0⟩

and it’s trivial to see that the final state reached byM is the same as M ; hence, by generality of x, we

can state that any machine M can be simulated by a QHFAM.

For the other direction we tried to prove lemma 17 but without success since the unitary matrices

involved do not allow to apply the same techniques as in the proof of 17. Thus it leaded us to try the

other way round checking if maybe 17 does not hold in this second case. The toy example we tried to

solve was for a language L such that:

a ∈ L

a(bc)i /∈ L∀i ∈ N+

but without any success.
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10.2.3 Third case

The last case is the following:

Ûx = Uxnxn−1xn−2···x1
xn

Uxnxn−1xn−2···x1
xn−1

· · ·Uxnxn−1xn−2···x1
xi

· · ·Uxnxn−1xn−2···x1
x2

Uxnxn−1xn−2···x1
x1

Theorem 53. Any MO-QFA M can be simulated by a QHFAM

Proof. The proof is the same as in the last case, adding some Eσ′
σ that are all mapped to the identity

matrix.

For this third case we tried to check if the same lemma as 17 holds. Trying to follow the same proof,

we encoutered a situation which is pretty similar but not exactly the same as in 17. In particular, let’s

suppose w = a ∈ L while x = bc ∈ Σ∗. When looking at the matrix Ûw, by definition we get:

Ûw = Ua
a = Ea

aU
ϵ
a

While Ûwx
i with i ≥ 1 is :

Ûwx
i = Ua(bc)i

c U
a(bc)i

b Ua(bc)i

c U
a(bc)i

b · · ·Ua(bc)i

c U
a(bc)i

b Ua(bc)i

a

if we write M = U
a(bc)i

c U
a(bc)i

b then Ûwx
i can be written as:

MMM · · ·M⏞ ⏟⏟ ⏞
i times

Ua(bc)i

a =M iUa(bc)i

a

Going even deeper, we can see that U
a(bc)i

a can be written as:

Ua(bc)i

a = Ec
aE

b
aE

c
aE

b
a · · ·Ec

aE
b
aE

a
aU

ϵ
a = Ec

aE
b
aE

c
aE

b
a · · ·Ec

aE
b
aU

a
a

We can then set M ′ = Ec
aE

b
a and rewriting the above statement as:

Ua(bc)i

a =M ′M ′M ′ · · ·M ′⏞ ⏟⏟ ⏞
i times

Ua
a = (M ′)iUa

a

Therefore, Ûwx
i can be written as:

Ûwx
i =M i(M ′)iUa

a

Resambling the proof of 17, at some point we will have to do the following operation:

Ûw − Ûwx
i

which yields to:

Ûw − Ûwx
i = Ua

a −M i(M ′)iUa
a

= (I −M i(M ′)i)Ua
a
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which does not allow us to apply 16 as in 17. We just used a toy example for sake of readability.

The reader can easily check that this situation is generated by any choice of x and w that satisfy 17

preconditions. Therefore we will end this part by stating that further investigations have to be done.

One of the main path follower will be to check if 16 holds also for matrices of the form (I −M i(M ′)i).





11
Conclusions

As we saw, a lot of different formalisms were introduced during the last 50 years to study the quantum

counterpart of the Finite state Automata. Each formalism brings advantages and disadvantages. In

some cases the closure properties are easier to prove, while other proofs are harder. What should be

by now clear to the reader is the following: until quantum automata are allowed to move only in one

direction, they are less powerful than their classical counterparts. This is a clearly counterintuitive

result. What seems to be a good candidate to overcome this limitation is the QHFA formalism we

introduced (in particular with the first acceptance condition). Proving that any regular language can

be accepted by a QHFA would demonstrate a larger expressive power than classical automata.
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