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Abstract. In this paper we start from the simplest form of Quantum
Finite Automata (QFAs), namely Measure-Once QFAs with cut-point.
First we elaborate on a variant of their semantics that can be obtained
through a shift from the Schrödinger to the Heisenberg picture of Quan-
tum Mechanics. In the Schrödinger picture states evolve in time while
observables remain constant, while in the Heisenberg one states are con-
stant and observables evolve. Interestingly, in the case of a QFA such
shift reverts time-evolution. However, the equivalence of the two pic-
tures over the class of QFAs holds thanks to the closure of the class with
respect to language mirroring. Since the expressive power of such class
of automata remains limited to infinite languages, we then consider their
extension with bounded (multi-letter QFAs) and unbounded memory.
Unfortunately, while bounded memory enhances the expressive power,
the unbounded memory approach does not behave as one would expect.

Keywords: Quantum Automata, Heisenberg Picture, Language Mir-
roring, Memory in Quantum Automata.

Introduction

Deterministic and Nondeterministic Finite State Automata (DFA/NFA) are the
building blocks of classical computation. They are the models at the basis of
Verification Techniques such as Temporal Logic Model Checking [15].

A shift to their probabilistic and stochastic counter-parts is necessary when-
ever the evolution of the computation depends on probabilities and rates. In this
context models such as Probabilistic/Stochastic Automata, Discrete/Continuous
Time Markov Chains, and Probabilistic/Stochastic Process Algebra have been
described (e.g., [20,21,24]). Their formal analysis involves performance metrics,
behavioural equivalences, and extensions of temporal logics.

A currently emerging field in the context of Quantitative Computation and
Performances Evaluation is Quantum Computation, where again extensions of
automata, Markov chains, and temporal logics constitute a starting point for
understanding properties of the computations (e.g., [19,17,3]).

⋆ This work is partially supported by PRIN MUR project Noninterference and Re-
versibility Analysis in Private Blockchains (NiRvAna) - 20202FCJM and by GNCS
INdAM project LESLIE.
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Even though Quantum Automata have been studied since the end of the
nineties, still today there is not a unique widely accepted definition of Quantum
Finite Automata (QFAs). Moore and Crutchfield [27] introduced the idea of Gen-
eral Quantum Automata and characterized the properties of Quantum Regular
Languages. The model they introduced was named Measure-Once Quantum Fi-
nite Automata (MO-QFAs) because the result can be observed (measured) only
when the read of the input string has terminated. In the same years, Kondacs
and Watrous in [23] introduced a different model of QFAs in which measurements
can be used at each step of the computation. For this reason, these are called
Measure-Many Quantum Finite Automata (MM-QFAs). Moreover, similarly to
what happens on probabilistic automata [32], a key role in the expressive power
of such models is played by the acceptance condition. The two most adopted
conditions are called cut-point and bounded error.

The expressive power of both MO-QFA and MM-QFA has been deeply in-
vestigated in [2,14,8]. The expressive power of MO-QFAs does not include all
languages accepted by DFAs. As a consequence, different extensions have been
considered. In [1] a model called Latvian QFAs was considered. Bertoni et al [9]
introduced MO-QFAs with control language which are able to recognize regular
languages with bounded error. The same behavior can be found in a formalism
in which a MO-QFAs are used together with a classical set of states [31]. Another
model that can at least recognize regular languages was presented in [29] were
the concept of Ancilla qubits is used.

In this paper we are interested in the most simple of these models, e.g., MO-
QFAs with cut-point acceptance condition. In the case of Quantum Circuits
the principle of deferred measurements states that measurements can always be
moved from an intermediate stage to the final step. This is not true in the case
of Quantum Automata, since MO-QFAs and MM-QFAs are not equivalent. So, a
Measure-Once condition is more in the spirit of a basic model. As for the accep-
tance condition, bounded error ensures the possibility of arbitrarily improving
the precision. Consequently, it has been largely studied in the literature. How-
ever, it is not the “equivalent” of what happens in experimental disciplines such
as biology and medicine, where cut-offs have to be arbitrarily chosen and no
separation is guaranteed between positive and negative answers.

First, in this paper we analyse whether it is possible to increase the expressive
power of MO-QFAs with cut-point without enriching their syntax, but simply
moving to an alternative semantics. Such semantics from the point of view of
physics is as natural as the one which has been considered in the literature so far.
We are talking of a shift from the Schrödinger picture of Quantum Mechanics to
the Heisenberg one. We will not obtain a positive answer in terms of increase of
the expressive power, but our investigation provides a closure property of MO-
QFAs with respect to mirror images which is new. In other terms, the mirror
closure proves that not only each internal step of a MO-QFA is reversible, but its
computation as a whole is. Such result was not granted because of the asymmetric
use in MO-QFAs of final states and measurement.
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As a second step, we are interested in considering another semantics for MO-
QFAs. This is only inspired by the Heisenberg picture and at first sight it seems
to provide an unbounded quantity of memory to the automata. In particular, at
each point of the computation all the prefix that has been read so far is involved
in the choice of the evolution. However, as it usually happens in the quantum
realm, our intuition is cheated and such unbounded quantity of memory is less
expressive than expected. Again, the path which leads us to such “negative”
result is interesting by itself. We quantify the minimum amount of memory
necessary for accepting finite languages and provide a pumping lemma for a
class of QFAs which have been studied in the literature with bounded error, but
not with cut-point [6,30].

The paper is organized as follows. In Section 1 we give a brief presentation
of the notation and the basic concepts that are useful throughout the paper. In
Section 2 we introduce MO-QFAs and we briefly survey the state of the art about
their expressive power and realizations. These results will be useful in Section 3
where we define Heisenberg Quantum Finite Automata (HQFAs) and compare
them with MO-QFAs. In Section 4 we study a class of Heisenberg inspired au-
tomata which we call Unbounded Memory Quantum Automata (UMQFAs) and
we compare them with a bounded memory counter-part. The proofs of the main
results of this paper can be found in the Appendix.

1 Preliminaries

1.1 Strings and Languages

An alphabet Σ is a set of symbols. We always refer to finite alphabets. A string
x = x1x2 . . . xm of length m over Σ is a finite sequence of symbols xi ∈ Σ. The
empty string ϵ is the only string of length 0. With Σi we indicate the set of all
strings of length i over Σ, while Σ≤i = ∪ij=0Σ

j is the set of all strings of length

at most i. Σ∗ = ∪i∈NΣ
i is the set of all finite length strings we can build on Σ.

Given a string x = x1x2 . . . xm we denote by ←−x its mirror image, i.e., the
string←−x = xmxm−1 . . . x1. Given an index 1 ≤ j ≤ n we denote by xj the prefix
of x from x1 to xj−1, i.e., xj = x1x2 . . . xj−1. If j = 1, then xj is the empty
string. Moreover, for h ∈ N we denote by xh

j the sub-string of x ranging from

xj−h to xj−1 if j − h > 0, and the prefix xj otherwise. In other terms, xh
j is the

sub-string of x ranging from xk to xj−1, where k is the maximum between 1 and
j − h. Notice that xh

j has length either h or j − 1.
A language L is a set of strings over an alphabet Σ, i.e., L ⊆ Σ∗. Given a

language L, we denote by
←−
L the mirror image of L, i.e.,

←−
L = {←−x | x ∈ L}.

1.2 Quantum Computing

The most used model of Quantum Computation relies on the formalism of state
vectors, unitary operators, and projectors. At high level we can say that state
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vectors evolve during the computation through unitary operators, then projec-
tors remove part of the uncertainty on the internal state of the system.

The state of the system is represented by a unitary vector over the Hilbert
space Cd with d = 2k for some k ∈ N. The concept of bit of classical computation
is replaced by that of qubit. While a bit can have value 0 or 1 a qubit is a
unitary vector of C2. When the two components of the qubit are the complex
numbers α = x + iy and β = z + iw, the squared norms |α|2 = x2 + y2 and
|β|2 = z2 + w2 represent the probabilities of measuring the qubit thus reading
0 and 1, respectively. In the more general case of k qubits the unitary vectors
range in Cd with d = 2k. Adopting the standard Dirac notation we denote a
column vector v ∈ Cd by |v⟩, and its conjugate transpose v† by ⟨v|. A quantum
state is a unitary vector:

|ψ⟩ =
d∑

h=1

ch |vh⟩

for some basis {|vh⟩}. In this case we also say that |ψ⟩ is a superposition with co-
efficients {ch} over the basis {|vh⟩}. When not specified, we refer to the canonical
basis denoted by {|0⟩ , |1⟩ , . . . , |n− 1⟩}, where for each q ∈ [0, d − 1] the vector
|q⟩ is the unitary vector having 1 as q+1-th component and all its other compo-
nents are 0. Moreover, usually |q⟩ is written using the binary representation of
q of length m. The canonical basis is an ortonormal basis for Cd. Further details
can be found in [28].

Unitary operators are a particular class of reversible linear operators. They
preserve both the angles between vectors and their lengths. In other terms,
unitary operators are transformation from one orthonormal basis to another.
Hence, they are represented by unitary matrices. Let U be a square matrix over
C. U is said to be unitary iff UU† = U†U = I. We describe the application of a
unitary matrix U to a state |ψ⟩ by writing:

|ψ′⟩ = U |ψ⟩

meaning that the state |ψ⟩ becomes |ψ′⟩ after applying the operator U .

In order to extract informations from a quantum state |ϕ⟩ a measurement,
also called observation, must be performed. Projectors are the most common
measurements/observables. Let |u⟩ be a vector. The projector operator Pu along
the direction of the unitary vector |u⟩ is the linear operator defined as:

Pu = |u⟩⟨u|

where |u⟩⟨u|, being the product between a column vector and a row one both of
size d, returns a matrix of size d×d. Given a set of directions F = {|u1⟩ , . . . |uf ⟩}
specified by unitary vectors the projector operator associated to F is defined as:

PF =
∑
u∈F
|u⟩⟨u|
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2 Measure-Once Quantum Finite Automata

Quantum Finite Automata (QFA) are the quantum counterpart of Finite Au-
tomata. Two models of Quantum Automata were independently introduced in
the literature: Measure-Once QFAs (MO-QFAs) [27] and Measure-Many QFAs
(MM-QFAs) [23]. The difference between the two definitions is about the num-
ber of observations that are made. While a MM-QFA is measured after reading
each letter from the input, in a MO-QFA only one measurement is made after
the whole input has been read.

We focus on MO-QFAs. Therefore, for sake of readability, we refer to MO-
QFAs with just QFAs.

Let Cd be a finite dimension Hilbert space and Q = {|0⟩ , |1⟩ , . . . |d− 1⟩} be
its canonical basis. Usually in quantum computation it holds that d = 2k for
some k ∈ N, where k is the number of involved qubits. However, we refer here to
a generic dimension d. It is not difficult to embed all the definitions and results
we present into a space of dimension 2k

′
> d, thus using k′ qubits, whenever it

is necessary in the implementations.

Definition 1 (QFA). A QFA is a 5-tuple M = (Q,Σ, U, |ψ⟩ , F ) where:

– Q–the set of states– is the finite canonical basis of Cd for some d ∈ N;
– Σ is a finite alphabet;
– U = {Uσ}σ∈Σ is a finite set of unitaries of dimension Cd × Cd;
– |ψ⟩ ∈ Cd is a unitary vector representing the initial superposition of M ;
– F ⊆ Q is the set of final states.

In the literature the standard semantics attributed to QFA is based on the
Schrödinger picture of quantum mechanics in which states evolve in time. We
will come back to this in Section 3, when we will compare this interpretation
with other possible ones. However, in the remaining of this section we will use
the letter S of Schrödinger to refer to a generic QFA.

A generic configuration for a QFA S is a unitary vector of Cd, i.e., it is a
vector of the form:

|φ⟩ =
∑
|q⟩∈Q

αq |q⟩

Let |φ⟩ be the current configuration of S and σ ∈ Σ be the current input symbol.
|φ⟩ evolves as follows:

|φ′⟩ = Uσ |φ⟩

The computation starts from |ψ⟩ and evolves reading the symbols of the
string x. At the end of the computation, i.e., when all the symbols of x have
been read, a measurement is performed on the obtained state of S using the
matrix PF =

∑
|q⟩∈F |q⟩⟨q|. The probability of S accepting a string x is:

pS(x) = ∥PFUx |ψ⟩ ∥2 = ⟨ψ|U†xP
†
FPFUx |ψ⟩ =

∑
|q⟩∈F

| ⟨q|Ux |ψ⟩ |2
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where Ux–the evolution matrix accumulated along the read of x– is defined as:

Ux = Uxn
Uxn−1

· · ·Ux1

We consider two different acceptance conditions. The first one is called with
cut-point and it recalls the acceptance condition of probabilistic automata [32].

Definition 2 (Cut-point QFA). A language L ⊆ Σ∗ is accepted by a QFA
S with cut-point λ if and only if L = {x ∈ Σ∗ | pS(x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by a QFA with cut-point if and
only if there exist a QFA S and λ ≥ 0 such that L ⊆ Σ∗ is accepted by S with
cut-point λ.

The second one is called with certainty. In this case we mimic the acceptance
of a deterministic automata (DFA).

Definition 3 (Certainty QFA). A language L ⊆ Σ∗ is said to be accepted by
a QFA S with certainty if the following holds:

x ∈ L iff pS(x) = 1 and x /∈ L iff pS(x) = 0

It is straightforward to see that an acceptance with certainty implies an
acceptance with cut-point 1− ϵ, ∀ϵ ∈ (0, 1]. The converse is trivially false.

The class of languages accepted by QFAs with cut-point was introduced and
characterized in [14]. Such class is called Unrestricted Measure-Once, UMO. One
of the main contribution to the characterization of such class is the connection
with the languages accepted by Probabilistic Automata:

Theorem 1 ([14]). Let L be a language accepted by a QFA S with cut-point λ.
There exists a Probabilistic Finite Automaton that accepts L with cut-point λ′,
for some λ′.

The class UMO was further investigated in [8,27], with the introduction of
the following pumping lemma.

Theorem 2 ([27]). Let L ⊆ Σ∗ be the language accepted by a QFA S with cut-
point λ. ∀x = uv ∈ L and ∀y ∈ Σ∗, there exists k ∈ N+ such that uykv ∈ L.

A straightforward consequence of the above theorem is that finite languages
cannot be accepted by QFA.

Corollary 1. QFAs can accept only languages that are either empty or infinite.

Notice that the theorem holds for any possible split of the string x into two
strings u and v. So, either u or v could be empty. In particular, taking v empty
we get that languages whose elements have a fixed suffix cannot be recognized.

Corollary 2. Let Σ = {a, b} and L = {x |x ends with a}. L cannot be accepted
by any QFA S with cut-point.
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Proof. Suppose such a S exists. Let x ∈ L and y = b, by Theorem 2 it holds
that ∃k ∈ N+ such that xyk ∈ L. This contradicts the definition of L. ⊓⊔

The above corollary also gives an example of a regular language that cannot
be accepted by QFAs.

Despite being unable of accepting finite languages, QFAs can accept lan-
guages that are not regular. Let x ∈ Σ∗, σ ∈ Σ. We denote by |x|σ the number
of occurrences of σ in x. It was proven in [14] that there exists a QFA that
accepts the language L = {x ∈ {a, b}∗ : |x|a ̸= |x|b} with cut-point 0.

The equivalent of UMO in the case of MM-QFAs is denoted by UMM (Unre-
stricted Measure-Many) and it was introduced in [14]. It was then characterized
and eventually further investigated in the literature (see, e.g., [2]). Results on
Quantum Automata descriptional complexity can be found in [12]. Recently in
[18] the expressive power of Quantum Automata over the unary alphabet under
different acceptance condition has been investigated. A physical realization of
Quantum Automata has been presented in [26]. Undecidability results have been
proved in [5]. In [11] it has been proved that languages accepted by MO-QFAs
with bounded error are not definable in Linear Time Temporal Logics, while it
is definable in the case of Measure-Many. A recent review can be found in [10].

Even more recently, Quantum Automata minimization has been studied in
[22], while succintness has been described and implemented in [25]. Physical
realizations of Quantum Computing algorithms always require to consider the
noise introduced by non-perfect gates. In [13] the aim is to implement QFAs on
noisy devices.

3 Heisenberg Quantum Finite Automata

The most widely adopted formulation of the Copenaghen interpretation of quan-
tum mechanics is the Schrödinger representation. It is based on the idea that
there is a state vector in an Hilbert space that completely describes the config-
uration of the system. This state vector evolves through time according to the
Schrödinger equation. In particular, at each time instant a unitary operator is
applied to the state vector. So, in the Schrödinger picture the state vector is
time-dependent, while the unitaries and the observables remain unchanged.

There exists another representation known as Heisenberg picture in which
the state vector is time-independent and always remains fixed to its value at
time 0. Therefore, the time-dependency is shifted on the observables.

A third representation, named Dirac picture, also known as Interaction pic-
ture, “distributes” time dependencies over both states and operators.

Even though a mathematical equivalence between Schrödinger and Heisen-
berg representations has been proved by Von Neumann in [33], divergencies were
pointed by Dirac in [16].
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In terms of Quantum Finite Automata all the models described in the lit-
erature so far rely on the Schrödinger picture, where the initial state evolves
through time using unitaries, while the observables never change 1.

In this section we shift to the Heisenberg picture and we formalize a new
semantics for QFAs, named Heisenberg Quantum Finite Automata (HQFAs).
The idea is that while the string x is read the state is unchanged, but there
is an effect on the projector. At the end of the read such modified projector
is applied to the initial state to obtain the final result. The way in which the
observable gets modified is in a sense arbitrarily chosen. In our definition we try
to keep such choice as close as possible to that of QFAs. In particular, in quantum
mechanics when one shifts from the Schrödinger picture to the Heisenberg one a
transformation of the states of the form U |φ⟩ is mapped into a transformation of
the observables/projectors of the form U†PU , where the meaning is that U† has
been applied to P . As a consequence HQFAs have exactly the same definition of
QFAs, while the difference is in the acceptance condition, i.e., in the semantics.

Let P be the current observable of a HQFA H and σ ∈ Σ be the current
input symbol. P evolves as follows:

P ′ = U†σPUσ

The computation starts from the observable PF and evolves reading the symbols
of x. At the end of the read a measurement is performed using the resulting
projector and the probability of accepting x is:

ρH(x) = ∥U†←−x PFU←−x |ψ⟩ ∥2 = ⟨ψ|U†←−x P
†
FPFU←−x |ψ⟩

where consistently with the definition given in Section 2 the evolution matrix
U←−x is defined as:

U←−x = Ux1
Ux2
· · ·Uxn

The acceptance condition with cut-point for an HQFA now inolves ρH .

Definition 4 (Cut-point HQFA). A language L ⊆ Σ∗ is accepted by an
HQFA H with cut-point λ if and only if L = {x ∈ Σ∗ | ρH(x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by an HQFA with cut-point if and
only if there exist an HQFA H and λ ≥ 0 such that L ⊆ Σ∗ is accepted by H
with cut-point λ.

Example 1. Let Q = {|0⟩ , |1⟩} be the canonical basis of C2. Let Σ = {a, b}.
Consider the two unitary matrices Ua = X (the negation gate) and Ub = H (the
Hadamard gate), i.e.:

Ua =

(
0 1
1 0

)
Ub =

1√
2

(
1 1
1 −1

)
Let |ψ⟩ = 1√

2
(|0⟩+ |1⟩) = |+⟩ and F = {|0⟩}.

1 Some work has been done for Quantum Cellular Automata, where the equivalence
between Schrödinger model and Heisenberg model has been proved (e.g., [4]).
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If we consider M as a QFA, i.e., we endow M with the the Schrödinger
semantics, we get that the probability for the sting ab is:

pM (ab) = ∥ |0⟩ ⟨0|UbUa |+⟩ ∥2 = ∥ |0⟩ ⟨0|Ub |+⟩ ∥2 = ∥ |0⟩ ⟨0|0⟩ ∥2 = ∥ |0⟩ ∥2 = 1

This means that no matter which is λ, the string ab is accepted.
If we consider the string abb we have to apply again Ub before projecting.

Hence, we obtain pM (abb) = ∥ |0⟩ ⟨0|Ub |0⟩ ∥2 = ∥ |0⟩ ⟨0|+⟩ ∥2 = 1/2.
On the other hand, if we look at M as a HQFA, i.e., we apply to M the

Heisenberg semantics, the probability for the string ab is:

ρM (ab) = ∥U†bU
†
a |0⟩ ⟨0|UaUb |+⟩ ∥2 = ∥U†b |1⟩ ⟨1|Ub |+⟩ ∥2 = ∥ |−⟩ ⟨−|+⟩ ∥2 = 0

where |−⟩ = 1√
2
(|0⟩ − |1⟩). This means that no matter which is λ, the string ab

is not accepted. Instead, if we consider the string ba we obtain:

ρM (ba) = ∥U†aU
†
b |0⟩ ⟨0|UbUa |+⟩ ∥2 = ∥U†a |+⟩ ⟨+|Ua |+⟩ ∥2 = ∥ |+⟩ ⟨+|+⟩ ∥2 = 1

As a matter of fact, in this simple example one can notice that for all x ∈ Σ∗
the behaviour of S on x is equivalent to the behaviour of H on its mirror image
←−x , i.e., pS(x) = ρH(←−x ). In the following we prove this result in the general case,
for any automaton. ⊓⊔

Theorem 3. Let M be a QFA over an alphabet Σ. For each x ∈ Σ∗ it holds
that

pM (x) = ρM (←−x )

Proof. Let y = ←−x . We have that ←−y = x. So, ρM (y) = ⟨ψ|U†←−y P
†
FPFU←−y |ψ⟩ =

⟨ψ|U†xP
†
FPFUx |ψ⟩ = pM (x). ⊓⊔

Intuitively, when we shift to the Heisenberg picture, the effect of the first char-
acter of x is close to the observable instead of being close to the initial state. So,
the word is read in the usual way from left to right by the automaton and the
effects of the read are accumulated on the observable. However, when we look
to such effects on the state, it is like if the word is read from right to left. In a
sense it seems that the flow of time is reverted in the Heisenberg picture.

One could argue that we could have avoided the mirror effect by using in
the Heisenberg definition the inverse unitary operators. Since the inverse of a
unitary operator is its transposed conjugate, this would have meant to define
the evolution of an observable P after reading a symbol σ as P ′ = UσPU

†
σ. In

the following example we show that such choice does not help in avoiding the
mirroring.

Example 2. Let us consider again the automaton M defined in Example 1. The
two matrices Ua = X and Ub = H coincide with their transposed conjugate,
i.e., U†a = Ua and U†b = Ub. So, the automaton M ′ defined using the transposed
conjugate coincides with M . Hence, pM (x) = ρM′(←−x ), for any string x. ⊓⊔
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As a consequence of Theorem 3, the languages accepted by Heisenberg se-
mantics are exactly the mirror images of those accepted by Schrödinger one.

Corollary 3. Let L ⊆ Σ∗. L is accepted by a QFA with cut-point λ if and only

if
←−
L is accepted by an HQFA with cut-point λ.

So, now the question is whether the two formalisms have the same expressive
power. As a consequence of the above corollary this is equivalent to check whether
QFAs are closed under mirror images. By Example 1 we already know that it is
not true that each language recognized by a QFA is closed under mirror images.
However, it can be the case that whenever a language L is recognized by a QFA

S, the language
←−
L is recongnized by a QFA S′.

Invoking Von Neumann’s proof of equivalence of Schrödinger and Heisenberg
pictures is not satisfactory by many point of views. First, Von Neumann’s result
has been proved in a general setting, while here we are confined in a restricted
model, where there is a single initial state, while the final states are many.
Moreover, only one projective measurement can be used and only at the end of
the read. Second, we are not dealing with a single quantum system, but with
an infinite set of systems, one for each string x. The input x does not affect the
initial state, but the sequence of unitary transformations. In a sense it affects
the hamiltonian of the system. Third, it would be interesting to have either a
constructive proof of equivalence or a counter-example in this specific setting.

The following result shows that QFAs are closed under mirror images. We
provide a constructive proof. Given a QFA for a language L, we build a QFA for

the language
←−
L . Intuitively, the asymmetry between a single initial state and a

set of final ones is solved through an opportune increase in the state space size.

Theorem 4 (Mirror Closure of QFAs). Let L ⊆ Σ∗. L is accepted by a

QFA with cut-point if and only if
←−
L is accepted by a QFA with cut-point.

So, we can conclude that HQFAs do not increase QFAS expressive power.

Corollary 4 (Equivalence between QFAs and HQFAs). L is accepted by
a QFA with cut-point if and only if L is accepted by an HQFA with cut-point.

Proof. Let L be accepted by a QFA with cut-point. By Theorem 4
←−
L is accepted

by a QFA with cut-point. As a consequence of Corollary 3 L is accepted by an
HQFA with cut-point.

On the other hand, let L be accepted by an HQFA with cut-point. By Corol-

lary 3
←−
L is accepted by a QFA with cut-point. By Theorem 4 L is accepted by

a QFA with cut-point. ⊓⊔

4 Heisenberg inspired Automata: (Un)bounded Memory

The Heisenberg semantics introduced in the previous section has the same ex-
pressive power of the Schrödinger one introduced in the literature. However, we
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can take inspiration from Heisenberg proposal and analyse what happens if each
time a character is read all the unitary matrices are transformed, i.e., instead
of changing at each step the observables we modify the unitaries associated to
the single characters. We do such changes by exploiting the characters that have
already been read.

In particular, given an automaton M = (Q,Σ, {Uσ}σ∈Σ , |ψ⟩ , F ), after read-
ing the prefix xj of the string x = x1x2 . . . xn the unitary matrix associated to
a character σ has evolved into:

Wxj
σ = UxjUσ

where Uϵ = Id is the identity transformation. So, if the current configuration
after reading xj is |φ⟩ and we read xj , then the state evolves as follows:

|φ′⟩ = Wxj
xj
|φ⟩ = Uxj

Uxj
|φ⟩

The computation starts from |ψ⟩ and evolves reading the symbols of the
string x. The state reached at the end of the read is:

Wx |ψ⟩

where Wx–the evolution matrix accumulated along the read of x– is defined as:

Wx = Wxn
xn

Wxn−1
xn−1

· · ·Wx2
x2

Wx1
x1

As in the case of QFAs the projector PF is finally applied to obtain the proba-
bility of accepting a string x, denoted by ωM (x):

ωM (x) = ∥PF Wx |ψ⟩ ∥2 = ⟨ψ|W†xP
†
FPF Wx |ψ⟩

Example 3. Let us consider again the automaton of Example 1. If we consider
the string abb the evolution matrix that is applied to the initial state is:

[(UbUa)Ub][(Ua)Ub][(Id)Ua]

where we use the parenthesis to emphasized the single steps. In particular, the
squared parenthesis enclose the read of a single character, while the rounded
ones enclose the transformations due to the read of the prefix accumulated so
far. Instantiating Ua, Ub and |ψ⟩ as in Example 1 we obtain that the state reached
at the end of the read is − |1⟩. So, since F = {|0⟩}, we get:

ωM (abb) = (−⟨1|)P †FPF (− |1⟩) = 0

Example 4. Let us now consider a simpler example in which Σ = {a}, Ua = X,
the initial state is |ψ⟩ = |0⟩, and F = {|0⟩}. It is immediate to see that when a
string of the form ak is read the evolution matrix has the form:

XkXk−1 · · ·X2X = X
(k+1)k

2

This means that a string of length k is accepted by the automaton if and only
if (k + 1)k is a multiple of 4. ⊓⊔
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As in the case of HQFAs, for these automata, that we call UMQFAs (Un-
bounded Memory Quantum Finite Automata), the syntactic definition is the
same as for QFAs, while the accepting condition is different.

Definition 5 (Cut-point UMQFA). A language L ⊆ Σ∗ is accepted by a
UMQFA M with cut-point λ if and only if L = {x ∈ Σ∗ | ωM (x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by a UMQFA with cut-point if
and only if there exist a UMQFA M and λ ≥ 0 such that L ⊆ Σ∗ is accepted by
M with cut-point λ.

Notice that we arbitrarily decided to rely on a single set of matrices. One
could have considered a more general definition. The only important point is
that when a character is read the unitary matrix that is applied depends also on
all the characters that have been read before. However, such dependency have
to be defined in a finitary way, i.e., relying on a finite initial set of matrices.

So the question now becomes: is this semantics increasing the expressive
power of QFAs? In order to analyse such question we first take a step back
and study what happens when, instead of using all the characters that have
been read so far, we only use a bounded amount of them. On the one hand,
such step back makes the situation more similar to what happen in the case of
classical automata, which have a finite amount of memory. On the other hand,
this naturally allows to give a more general definition, where a larger set of
unitaries is used.

4.1 Bounded Memory

The most natural way to instantiate the above semantics in order to take care
only of a bounded quantity of characters is to fix h ≥ 0 and to refer to xh

j

instead of xj (see Section 1.1). The sub-string xh
j takes into account at most h

symbols that precede xj in the string x. Since there exists a finite number of
strings of length at most h, the matrices Wy

σ , with y of length at most h, can be
directly specified in the definition of the automaton. Such automata have been
already defined in the literature [30,6], using an equivalent notation, and called
Multi-letter Quantum Finite Automata (MQFA). However, as we will discuss a
different acceptance condition was used. Let h ∈ N.

Definition 6 (h-MQFA). An h-MQFA is a 5-tuple M = (Q,Σ, W, |ψ⟩ , F )
where:

– Q–the set of states– is the finite canonical basis of Cd for some d ∈ N;
– Σ is a finite alphabet;
– W = {Wy

σ }σ∈Σ,y∈Σ≤h is a finite set of unitaries of dimension Cd × Cd;

– |ψ⟩ ∈ Cd is a unitary vector representing the initial superposition of M ;
– F ⊆ Q is the set of final states.

Let x = x1x2 . . . xn be an input string for an h-MQFA M = (Q,Σ, W, |ψ⟩ , F ).
The computation starts in the state |ψ⟩. Let us assume that after reading the
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first j−1 symbols of x a state |φ⟩ is reached. When xj is read the states evolves
according to the following law:

|φ′⟩ =W
xh
j

xj |φ⟩

The computation starts from |ψ⟩ and evolves reading the symbols of the
string x. At the end of the computation, a measurement is performed on the
state of M through the projector PF . The probability of M accepting x is:

µM (x) = ∥PFWx |ψ⟩ ∥2

where Wx is defined as:

Wx =W
xh
n

xn W
xh
n−1

xn−1 · · ·W
xh
2

x2 W
xh
1

x1

The acceptance condition with cut-point for an h-MQFA is based on µM .

Definition 7 (Cut-point h-MQFA). A language L ⊆ Σ∗ is accepted by an
h-MQFA M with cut-point λ if and only if L = {x ∈ Σ∗ | µM (x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by an h-MQFA with cut-point if
and only if there exist an h-MQFA M and λ ≥ 0 such that L ⊆ Σ∗ is accepted
by M with cut-point λ.

Intuitively, h-MQFAs have bounded memory h in the sense that at each
point of the computation the preceding h characters are used for choosing the
evolution. Notice that QFAs coincide with 0-MQFAs. Moreover, each h′-MQFA
can be embedded into a h-MQFA with h > h′ by simply defining W in such a
way that if x and y are two strings of length at most h that coincide on the
suffix of length h′, then Wx

σ =Wy
σ , for each σ ∈ Σ.

Example 5. Let Σ = {a, b} and L = {a, b}∗b, i.e., the language of strings that
end with b. The pumping lemma for QFAs ensures that this language cannot
be accepted by a QFA with cut-point. Consider instead the 1-MQFA M =
(Q,Σ, W, |ψ⟩ , F ) where Q = {|0⟩ , |1⟩}, Σ = {a, b}, |ψ⟩ = |0⟩, F = {|1⟩}. The
set W is defined as follows:

W ϵ
b =W a

b =W b
a = X W b

b = Id

and all the other matrices are the identity. The above matrices exactly simulate
the behaviour of the following deterministic automaton, interpreting |i⟩ as qi:

q0 q1

b

a

a b

Fig. 1. Deterministic automaton accepting {a, b}∗b.

So, M accepts L with certainty, hence also any cut-point λ ≥ 0 is fine.
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In [6,30] properties of this class of automata have been studied in the case of
isolated cut-point acceptance condition, also called bounded error. It was shown
that the expressive power of h-MQFAs is strictly dependent on the parameter
h. The set of languages recognized by h-MQFAs with bounded error coincides
with those recognized by h-Group Finite Automata and are a subset of regular
languages. As a consequence in [30] it has been proved that the set of languages
accepted by a h′-MQFAs with bounded error is strictly included in the set of
languages accepted by h-MQFAs with bounded error, for h′ < h. This is con-
sistent with our intuition that more memory increases the computation power.
Moreover, in [30], it was proved that if the minimal DFA accepting a language
L contains a particular forbidden structure, then L cannot be accepted by h-
MQFAs with bounded error, for any h ≥ 0. This is a structural characterization
of languages that cannot be accepted by h-MQFAs with bounded error.

In this section, as in the rest of this paper, we focus on cut-point acceptance
condition which is less demanding than bounded error and has not been studied
in the literature for h-MQFAs. We start presenting a pumping lemma which
provides a structural characterization of the languages that are accepted from
h-MQFAs with cut-point. Then we investigate on the expressive power of h-
MQFAs with respect to h. Differently from QFAs, h-MQFAs can also recognize
finite languages and still they constitute a proper hierarchy.

In the proof of the pumping lemma we exploit the following lemma which is
also at the basis of the pumping lemma for QFAs. The norm ∥A∥ of a matrix A
is defined as:

∥A∥ = sup
⟨u|u⟩=1

{∥A |u⟩ ∥}

Lemma 1 ([8]). Let V ∈ Cd × Cd be a unitary matrix let Id ∈ Cd × Cd be the
identity matrix of dimension d. For any ε > 0 there exists k ∈ N+ such that:

∥Id− V k∥ ≤ ε

The pumping lemma for h-MQFAs states that if we consider a sufficiently
long suffix of a string which is inside the accepted language, then we can pump
such suffix for an opportune number of times and fall again inside the language.

Theorem 5 (Pumping Lemma for h-MQFAs). Let L ⊆ Σ∗ be the language
accepted by an h-MQFA. Then, ∀x = uv ∈ L with |v| ≥ h there exists k ∈ N+

such that xvk ∈ L.
Notice that differently from Theorem 2, the above pumping lemma does not
prevent finite languages to be accepted by h-MQFAs. As a matter of fact, if all
the strings accepted by an h-MQFAs are shorter than h, then it is not possible
to find a suffix that can be pumped.

Theorem 6 (Singleton/Finite Languages). Let L = {w} with w ∈ Σh−1

and h− 1 > 0. Then there exists an h-MQFA that accepts L with certainty.
Let L be a finite language whose elements have length less than h. There

exists an h-MQFA that accepts L with cut-point.
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We can exploit our pumping lemma to prove that the amount of memory we
provided to the h-MQFA in the above theorem is the minimum.

Lemma 2. Let L = {w} with w ∈ Σh−1, h−1 > 0. Then, there is no h′-MQFA,
with h′ < h that accepts L with cut-point.

Proof. Assume by contradiction that there exists an h′-MQFA that accepts L
with h′ < h. Since |w| = h − 1 ≥ h′, the string w can be written as uv with
v ∈ Σh′

. By Theorem 5, it holds that there exists a k ∈ N+ such that wvk ∈ L.
So, we have a contradiction. ⊓⊔

Exploiting Theorems 5 and 6, together with Lemma 2 we have that the set
of languages accepted by h′-MQFAs is a proper subset of the set of languages
accepted by h-MQFAs, with h′ < h. The inclusion immediately follows from
the definition of h-MQFAs and our results show that the inclusion is proper by
exhibiting as witnesses all the singleton languages of strings of length h′.

Corollary 5. The set of languages accepted by h′-MQFAs with cut-point is a
proper subset of those accepted by h-MQFAs with cut-point, when h′ < h.

The hierarchy result proved in [30] concerns sets of languages which are all
included in the set of regular languages, while our hierarchy includes already at
level 0 non-regular languages.

4.2 Unbounded Memory

QFAs and also h-MQFAs fail to recognize many classical regular languages, since
unitary transformations introduce a notion of memory which is quite different
from the classical one.

On the one hand, it is easy to define a classical automaton for a finite language
by using the finite set of states of the automaton to store the finite quantity of
memory that is necessary. This cannot be achieved in QFAs and in h-MQFAs,
when h is not large enough, as a consequence of the following property of unitary
matrices that has been stated in Lemma 1:

∀ε > 0 ∃k ∈ N+ ∥Id− V k∥ ≤ ε

This is the key ingredient of the pumping lemmas for QFAs and h-MQFAs.
On the other hand, it is possible to define a QFA that accepts the non-regular

language of strings having a different number of a and b characters. Classical
automata do not have enough memory for this language, since it is necessary to
count an unbounded number of characters.

We started this section introducing the Heisenberg inspired automata called
UMQFAs hoping to increase the expressive power of QFA and h-MQFAs still
relying on a finite set of unitaries and a single measurement at the end of the
read. It is time to draw some conclusions about this. The automaton described
in Example 4 pointed out that in UMQFAs we are not able to replicate the use
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of a unitary matrix V for any possible k ∈ N+, i.e., we cannot exploit Lemma 1.
For instance in the example the matrix X can only occur with an exponent of
the form (k + 1)k/2, i.e., all the possible values assumed by a polynomial p(k)
when k ranges in N+. The proof of Lemma 1 in [8] is based on Cauchy sequences
and cannot be easily generalized. However, there is another proof of the same
result in [14] that ultimately relies on the following algebraic property:

for each α ∈ R \ Q the set of fractional parts of the multiples of α, i.e.,
{kα− ⌊kα⌋ | k ∈ N}, is dense in [0, 1].

This results generalizes to polynomials having irrational coefficients and to mul-
tiple dimensions (e.g., [7]). As a consequence we have a language that can be
accepted by h-MQFAs, but not by UMQFAs.

Theorem 7. Let Σ = {a} and L = {ϵ, a}. There is a 2-MQFA that accepts L
with cut-point and there is not a UMQFAs that accepts L with cut-point.

There are technical ingredients in the proof of the above result that are some-
how interesting. We had to carefully choose the language L in order to obtain
homogeneous polynomials. Otherwise the eigenvalues related to rotations that
are rational multiples of π would have given troubles. Moreover, the interplay
between some eigenvalues could be favorable for constructing UMQFAs that ap-
proximate h-MQFAs, since the distribution of the wrong strings accepted by the
UMQFA is not uniform.

Beside these technical considerations, the result shows that the unbounded
memory we tried to introduce does not generalize the bounded one, and it does
not seem easy to find a natural generalization with a finitary description.

5 Conclusions

Quantum Computing is becoming a more and more investigated subject thanks
to phenomena like quantum speed-up. Using the properties of quantum me-
chanics it is possible to design algorithms that polynomially solve problems that
require exponential time with classical computation [28]. However, when one
looks at basic models of computation such as automata the rules of quantum
mechanics, imposing unitary evolutions along the computation, constitute more
an obstacle to the expressive power, than an advantage. Informally, we can say
that the unitaries cause a loss of memory in the automata. As a matter of fact,
a simple language including only one string cannot be accepted by MO-QFAs.

In our work we tried to better understand the role of unitaries and mea-
surements in MO-QFAs. We proved that for any MO-QFA there is a “reversed”
MO-QFA that accepts the mirror language. Then we analysed the effect of play-
ing with the unitaries. We forced a sort of stuttering behaviour hoping to gain
expressive power. We obtained a first negative result which however gives some
suggestions for further investigations. For example, there may be other defini-
tions for the Unbounded Memory case that lead to larger expressive power.
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Appendix: Proofs of Main Theorems

5.1 Proof of Theorem 4

Let M = (Q,Σ, {Uσ}σ∈Σ , |ψ⟩ , F ) be a QFA accepting L with cut-point λ. We
recall that Q is the canonical basis of Cd, for some d ∈ N. Without loss of
generality, let F = {q0, q1, . . . qm−1}. Let x = x1x2 . . . xn be an input string. By
definition, the acceptance probability of M for x is:

pM (x) =

m−1∑
i=0

| ⟨qi|Ux |ψ⟩ |2

We now define
←−
M = (

←−
Q,Σ, {Vσ}σ∈Σ ,

∣∣∣←−ψ 〉
,
←−
F ), where

←−
Q is the canonical basis

of Cdm and:

Vσ =

m−1∑
i=0

|i⟩ ⟨i|⊗U†σ,
∣∣∣←−ψ 〉

=
1√
m

m−1∑
i=0

|i⟩ ⊗ |qi⟩,
←−
F = {|i⟩⊗|ψ⟩ |i ∈ [0,m−1]}

We have that Vx = Vxn
Vxn−1

· · ·Vx1
and U←−x = Ux1

Ux2
. . . Uxn

. By definition
of QFA we get:

p←−
M
(x) = ∥P←−

F
Vx

∣∣∣←−ψ 〉
∥2

= ∥P←−
F

1√
m

m−1∑
i=0

|i⟩ ⊗ U†xn
U†xn−1

· · ·U†x1
|qi⟩∥2

= ∥ 1√
m

m−1∑
i=0

|i⟩ ⊗
(
|ψ⟩ ⟨ψ|U†xn

U†xn−1
· · ·U†x1

|qi⟩
)
∥2

= ∥ 1√
m

m−1∑
i=0

(
⟨ψ|U†xn

U†xn−1
· · ·U†x1

|qi⟩
)
|i⟩ ⊗ |ψ⟩∥2

=
1

m

m−1∑
i=0

| ⟨ψ|U†xn
U†xn−1

· · ·U†x1
|qi⟩ |2

=
1

m

m−1∑
i=0

| (⟨qi|U←−x |ψ⟩)
∗ |2 =

1

m

m−1∑
i=0

| ⟨qi|U←−x |ψ⟩ |2 =
1

m
pM (←−x )

Let
←−
λ = λ

m . We have that:

←−x ∈ L iff pM (←−x ) > λ iff p←−
M
(x) >

←−
λ iff x ∈

←−
L

⊓⊔
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5.2 Proof of Theorem 5

For sake of readability we prove the result for |v| = h. For |v| > h the idea is
the same, just the notation would be much heavier.

Let L ⊆ Σ∗ be a language and let M = (Q,Σ, W, |ψ⟩ , F ) be an h-MQFA
that accepts L with cut-point λ.

Let x = uv = u1 . . . uav1 . . . vh be a string of L. First we write the matrix
Wxvj , for a generic j ∈ N, in order to make explicit its relationship with Wx. In
particular, by applying the definition of h-QMFA we have that Wxvj = V jWx,
where V is defined as:

V =W vhv1···vh−1
vh

W vh−1vhv1···vh−2
vh−1

· · ·W v1v2···vh
v1

Having represented a vector |v⟩ in the canonical basis and being |q⟩ be an
element of the canonical basis, let (|v⟩)q be the q−th component of |v⟩. For any
j ∈ N it holds:

|µM (x)− µM (xvj)| =
∣∣∣∑q∈F

(
|(Wx |ψ⟩)q|2 − |(Wxvj |ψ⟩)q|2

)∣∣∣ ≤
≤ 2

∑
q∈F | |(Wx |ψ⟩)q| − |(Wxvj |ψ⟩)q| | ≤ 2

∑
q∈F |(Wx |ψ⟩)q − (Wxvj |ψ⟩)q| =

= 2
∑

q∈F
∣∣ (Wx |ψ⟩)q − (V jWx |ψ⟩)q

∣∣ = 2
∑

q∈F
∣∣ ⟨q| (Id− V j)Wx |ψ⟩

∣∣ ≤
≤ 2

∑
q∈F ∥Id− V j∥ = 2|F |∥Id− V j∥

Since x ∈ L, we have µM (x) − λ = ∆ > 0. By Lemma 1 there exists k ∈ N+

such that:

∥Id− V k∥ ≤ ∆

4|F |

which yields to
∣∣µM (x)− µM (xvk)

∣∣ ≤ ∆
2 . Therefore, xv

k ∈ L, since:

µM (xvk)− λ ≥ µM (x)− ∆

2
− λ ≥ ∆

2
≥ 0

⊓⊔

5.3 Proof of Theorem 6

Let M = (Q,Σ, W, |ψ⟩ , F ) be a h-MQFA, where Q = {|0⟩ , |1⟩}, |ψ⟩ = |0⟩,
F = {|1⟩}. The states |0⟩ and |1⟩ are such that |1⟩ = X |0⟩ and |0⟩ = X |1⟩.
Since w has length h− 1 > 0, w = uα with u ∈ Σh−2, α ∈ Σ. We define:

Wu
α = X

Ww
σ = X ∀σ ∈ Σ

while all the other matrices inside W are the identity matrix. We must now prove
that the language accepted by M is exactly L.

If w is the input for M , then the computation evolves as follows:

Ww =W
wh

m
m W

wh
m−1

wm−1 . . .W
wh

1
w1
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Since all the matrices we set to be different from the identity concern strings

with length that is at least h−1, it holds that W
wh+1

j
wj = I, ∀j ∈ {1, 2, . . .m− 1}

Therefore,

Ww =W
wh+1

m
wm =Wu

α = X

Since the initial state is |0⟩, then ∥PWw |0⟩ ∥2 = ∥P |1⟩ ∥2 = 1.
Otherwise, suppose x ̸= w is the input forM . If the string x does not contain

the sub-string w, then clearly Wx = Id, and x is refused. If x has w as proper
prefix, then x is of the form ws, with s = σ1 . . . σj , j ≥ 1. In this case, we have
that Wx is as follows:

Wx =W
xh
h−j−1

σj W
xh
h−j−2

σj−1 · · ·Wxh
h−1

σ1 Ww

=W
xh
h−j−1

σj W
xh
h−j−2

σj−1 · · ·Ww
σ1
Ww = Id · · ·XX = Id

since all the matrices of the formWy
σ , with y of length h are the identity matrix.

So, x is refused. The last case we need to consider is when w occurs as a proper
sub-string of x, but it is not a proper prefix of x. This means that the input x
is of the form x = vws, with v ̸= ϵ and vw which does not have w as prefix. In
this case, the key point is that since |w| = h − 1, but w is now preceded by at
least one character the matrices Wu

α and Ww
σ do not occur in Wx. So, Wx = Id

and x is refused. Notice that the automaton we defined accepts with certainty.

Let L = {x1, . . . ,xℓ} be a finite language whose elements have length less
than h. For each element xj there exists an hj-MQFA that accepts only xj with
certainty. As already observed any h′-MQFA can be embedded into an h-MQFA
that accepts the same language with the same cut-point, if h ≥ h′. Let h be
greater than the length of the longest string in L. We have that for each element
xj of L there exists an h-MQFA Mj that accepts only xj with certainty. The
tensor product M of the Mj ’s automata, whose construction is similar to that
used in the proof of Theorem 4 accepts the language L. The tensor product
automaton does not accept with certainty but with cut-point λ, with λ any
number in the interval (0, 1/ℓ). ⊓⊔

5.4 Proof of Corollary 5

Let h, h′ ∈ N+ with h′ < h. From Lemma 2 we know that there exist languages
accepted by h−MQFAs, but not by h′−MQFAs.
We must prove that all the languages accepted by h′−MQFAs are also accepted
by h−MQFAs.
Let M = (Q,Σ, W, |ψ⟩ , F ) be a h′−MQFA accepting a language L. We can
build an h−MQFAM ′ = (Q,Σ, W′, |ψ⟩ , F ) accepting the same language setting
W′ = W (eventually completing with identity matrices). ⊓⊔

5.5 Proof of Theorem 7

By Theorem 6 there is a 2-MQFA that accepts L = {ϵ, a} with cut-point.
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Let us assume by contradiction that there exists M = (Q,Σ, U, |ψ⟩ , F )
UMQFA that accepts L = {ϵ, a} with cut-point λ. Since the string ϵ is in L
it has to be:

ωM (ϵ) = ∥PF |ψ⟩ ∥2 = ∥PFUa |ψ⟩ ∥2 = λ+∆ > λ

Any other string ak, with k > 1 over the alphabet Σ would instead give:

ωM (ak) = ∥PF Wak |ψ⟩ ∥2 = ∥PFU
k(k+1)

2
a |ψ⟩ ∥2

Let us consider a generic unitary matrix V and study the sequence:

{V
k(k+1)

2 }k>1

As observed in [14], V can be diagonalized and V h = RDhR−1, where R is
unitary and D is the diagonal matrix of the eigenvalues of V . Let eiπvj be the
j-th eigenvalue of V .

If all the rjs are rational, then let n = 4Πjqj , where the qjs are the denomi-

nators of the rjs. We have that D
n(n+1)

2 = Id, and hence V
n(n+1)

2 = Id.
If m of the rj are irrational, and ℓ of them are rational, we can safely as-

sume that the first m are the irrational ones. Let again n be defined as above
considering only the rational coefficients. If we consider the sub-sequence:

{V
nk(nk+1)

2 }k>1

we have that all the rational eigenvalues have always values 1 in the sub-
sequence. On the other hand, the remaining eigenvalues take values of the

form eiπrj
nk(nk+1)

2 in the sub-sequence. Let p : N → Rm be defined as p(k) =
(r14nk(4nk + 1), . . . , rm4nk(4nk + 1)). These are quadratic polynomials in the
variable k with irrational coefficients. The fractional parts of each of these poly-
nomials are dense and uniformly distributed over [0, 1] (e.g., [7]). This means that
each of these polynomials is infinitely many times arbitrarily close to a multiple

of 4. This implies that each of the values eiπrj
nk(nk+1)

2 is infinitely many times
arbitrarily close to 1. As far as the whole polynomial function p is concerned it
is uniformly distributed over [0, 1]m if the irrational rjs are independent. When
some of the of the irrational rjs are linear combinations of the others the uni-
form distribution is no more ensured, but the density in (0, 0, . . . , 0) is preserved,
since by making the fractional parts of the independent ones arbitrary small we
can ensure that also the fractional parts of their linear combination are small
enough.

Hence, for any unitary matrix V , and for each ε there exists k > 1 such that:

∥Id− V
k(k−1)

2 ∥ ≤ ε

As a consequence working as in the proof of Theorem 5 on the string ϵ which is

in L and using U
k(k−1)

2
a we obtain that there exist k > 1 such that ak is accepted

by M . This is a contradiction. ⊓⊔
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